
Anonymous Connections and Onion Routing

Michael G. Reed, Paul F. Syverson, and David M. Goldschlag �

Naval Research Laboratory

Abstract

Onion Routing is an infrastructure for private com-

munication over a public network. It provides anony-

mous connections that are strongly resistant to both

eavesdropping and tra�c analysis. Onion routing's

anonymous connections are bidirectional and near real-

time, and can be used anywhere a socket connection

can be used. Any identifying information must be in

the data stream carried over an anonymous connec-

tion. An onion is a data structure that is treated as the

destination address by onion routers; thus, it is used

to establish an anonymous connection. Onions them-

selves appear di�erently to each onion router as well as

to network observers. The same goes for data carried

over the connections they establish. Proxy aware ap-

plications, such as web browsing and e-mail, require no

modi�cation to use onion routing, and do so through

a series of proxies. A prototype onion routing network

is running between our lab and other sites. This paper

describes anonymous connections and their implemen-

tation using onion routing. This paper also describes

several application proxies for onion routing, as well as

con�gurations of onion routing networks.

1 Introduction

Is Internet communication private? Most security

concerns focus on preventing eavesdropping [18], i.e.,

outsiders listening in on electronic conversations. But

encrypted messages can still be tracked, revealing who

is talking to whom. This tracking is called tra�c analy-

sis and may reveal sensitive information. For example,

the existence of inter-company collaboration may be

con�dential. Similarly, e-mail users may not wish to

�
Address: (For Reed and Syverson) Naval Research Labo-

ratory, Center For High Assurance Computer Systems, Wash-

ington, D.C. 20375-5337, USA, phone: +1 202.767.2389, fax:

+1 202.404.7942, e-mail: flast nameg@itd.nrl.navy.mil. (For

Goldschlag) Divx, 570 Herndon Parkway, Herndon, VA 20170,

USA, phone: +1 703-708-4028. fax: +1 703-708-4088, e-mail:

david.goldschlag@divx.com

reveal who they are communicating with to the rest of

the world. In certain cases anonymity may be desir-

able also: anonymous e-cash is not very anonymous if

delivered with a return address. Web based shopping

or browsing of public databases should not require re-

vealing one's identity.

This paper describes how a freely available system,

onion routing , can be used to protect a variety of In-

ternet services against both eavesdropping and tra�c

analysis attacks, from both the network and outside ob-

servers. This paper includes a speci�cation su�cient to

guide both re-implementations and new applications of

onion routing. We also discuss con�gurations of onion

routing networks and applications of onion routing, in-

cluding Virtual Private Networks (VPN), Web brows-

ing, e-mail, remote login, and electronic cash.1

A purpose of tra�c analysis is to reveal who is talk-

ing to whom. The anonymous connections described

here are designed to be resistant to tra�c analysis, i.e.,

to make it di�cult for observers to learn identifying in-

formation from the connection (e.g., by reading packet

headers, tracking encrypted payloads, etc.). Any iden-

tifying information must be passed as data through

the anonymous connections. Our implementation of

anonymous connections, onion routing, provides pro-

tection against eavesdropping as a side e�ect. Onion

routing provides bidirectional and near real-time com-

munication similar to TCP/IP socket connections or

ATM AAL5 [6]. The anonymous connections can sub-

stitute for sockets in a wide variety of unmodi�ed Inter-

net applications by means of proxies. Data may also be

passed through a privacy �lter before being sent over

an anonymous connection. This removes identifying

information from the data stream, to make communi-

cation anonymous too.

Although onion routing may be used for anony-

mous communication, it di�ers from anonymous re-

mailers [7, 16] in two ways: Communication is real-time

and bidirectional, and the anonymous connections are

application independent. Onion routing's anonymous

1Preliminary versions of portions of this paper have appeared

in [28, 14, 24].

1

connections can support anonymous mail as well as

other applications. For example, onion routing may be

used for anonymousWeb browsing. A user may wish to

browse public Web sites without revealing his identity

to those Web sites. That requires removing informa-

tion that identi�es him from his requests toWeb servers

and removing information from the connection itself

that may identify him. Hence, anonymous Web brows-

ing uses anonymized communication over anonymous

connections. The Anonymizer [1] only anonymizes the

data stream, not the connection itself. So it does not

prevent tra�c analysis attacks like tracking data as it

moves through the network.

This paper is organized in the following way: Sec-

tion 2 presents an overview of onion routing. Section

3 presents empirical data about our prototype. Sec-

tion 4 de�nes our threat model. Section 5 describes

onion routing and the application speci�c proxies in

more detail. Section 6 describes the implementation

choices that were made for security reasons. Section 7

describes how onion routing may be used in a wide va-

riety of Internet applications. Section 8 contrasts onion

routing with related work, and section 9 presents con-

cluding remarks.

2 Onion Routing Overview

In onion routing, instead of making socket connec-

tions directly to a responding machine, initiating ap-

plications make connections through a sequence of ma-

chines called onion routers . The onion routing net-

work allows the connection between the initiator and

responder to remain anonymous. Anonymous connec-

tions hide who is connected to whom, and for what

purpose, from both outside eavesdroppers and com-

promised onion routers. If the initiator also wants to

remain anonymous to the responder, then all identify-

ing information must be removed from the data stream

before being sent over the anonymous connection.

Onion routers in the network are connected by long-

standing (permanent) socket connections. Anonymous

connections through the network are multiplexed over

the longstanding connections. For any anonymous con-

nection, the sequence of onion routers in a route is

strictly de�ned at connection setup. However, each

onion router can only identify the previous and next

hops along a route. Data passed along the anonymous

connection appears di�erent at each onion router, so

data cannot be tracked en route, and compromised

onion routers cannot cooperate by correlating the data

stream each sees. We will also see that they cannot

make use of replayed onions or replayed data.

2.1 Operational Overview

The onion routing network is accessed via a series

of proxies . An initiating application makes a socket

connection to an application proxy . This proxy mas-

sages connection message format (and later data) to a

generic form that can be passed through the onion rout-

ing network. It then connects to an onion proxy , which

de�nes a route through the onion routing network by

constructing a layered data structure called an onion.

The onion is passed to the entry funnel , which occu-

pies one of the longstanding connections to an onion

router and multiplexes connections to the onion rout-

ing network at that onion router. That onion router

will be the one for whom the outermost layer of the

onion is intended. Each layer of the onion de�nes the

next hop in a route. An onion router that receives an

onion peels o� its layer, identi�es the next hop, and

sends the embedded onion to that onion router. The

last onion router forwards data to an exit funnel , whose

job is to pass data between the onion routing network

and the responder.

In addition to carrying next hop information, each

onion layer contains key seed material from which keys

are generated for crypting2 data sent forward or back-

ward along the anonymous connection. (We de�ne for-

ward to be the direction in which the onion travels and

backward as the opposite direction.)

Once the anonymous connection is established, it

can carry data. Before sending data over an anony-

mous connection, the onion proxy adds a layer of en-

cryption for each onion router in the route. As data

moves through the anonymous connection, each onion

router removes one layer of encryption, so it arrives at

the responder as plaintext. This layering occurs in the

reverse order for data moving back to the initiator. So

data that has passed backward through the anonymous

connection must be repeatedly post-crypted to obtain

the plaintext.

By layering cryptographic operations in this way,

we gain an advantage over link encryption. As data

moves through the network it appears di�erent to each

onion router. Therefore, an anonymous connection is

as strong as its strongest link, and even one honest node

is enough to maintain the privacy of the route. In link

encrypted systems, compromised nodes can cooperate

to uncover route information.

Onion routers keep track of received onions until

they expire. Replayed or expired onions are not for-

warded, so they cannot be used to uncover route in-

formation, either by outsiders or compromised onion

2We de�ne the verb crypt to mean the application of a cryp-

tographic operation, be it encryption or decryption.

2

routers. Note that clock skew between onion routers

can only cause an onion router to reject a fresh onion

or to keep track of processed onions longer than nec-

essary. Also, since data is encrypted using stream ci-

phers, replayed data will look di�erent each time it

passes through a properly operating onion router.

Although we call this system onion routing, the

routing that occurs here does so at the application

layer of the protocol stack and not at the IP layer.

More speci�cally, we rely upon IP routing to route data

passed through the longstanding socket connections.

An anonymous connection is comprised of portions of

several linked longstanding multiplexed socket connec-

tions. Therefore, although the series of onion routers

in an anonymous connection is �xed for the lifetime

of that anonymous connection, the route that data ac-

tually travels between individual onion routers is de-

termined by the underlying IP network. Thus, onion

routing may be compared to loose source routing.

Onion routing depends upon connection based ser-

vices that deliver data uncorrupted and in-order. This

simpli�es the speci�cation of the system. TCP socket

connections, which are layered on top of a connection-

less service like IP, provide these guarantees. Similarly,

onion routing could easily be layered on top of other

connection based services, like ATM AAL5.

Our current prototype of onion routing considers the

network topology to be static and does not have mecha-

nisms to automatically distribute or update public keys

or network topology. These issues, though important,

are not the key parts of onion routing and will be ad-

dressed in a later prototype.

2.2 Configurations

As mentioned above neighboring onion routers are

neighbors in virtue of having longstanding socket con-

nections between them, and the network as a whole is

accessed from the outside through a series of proxies.

By adjusting where those proxies reside it is possible to

vary which elements of the system are trusted by users

and in what way. (For some con�gurations it may be ef-

�cient to combine proxies that reside in the same place,

thus they may be only conceptually distinct.)

2.2.1 Firewall Con�guration

In the �rewall con�guration, an onion router sits on

the �rewall of a sensitive site. This onion router serves

as an interface between machines behind the �rewall

and the external network. Connections from machines

behind the �rewall to the onion router are protected

by other means (e.g., physical security). To complicate

tracking of tra�c originating or terminating within the

sensitive site, this onion router should also route data

between other onion routers. This con�guration might

represent the system interface from a typical corporate

or government site. Here the application proxies (to-

gether with any privacy �lters), and the onion proxies

would typically live at the �rewall as well. (Typically,

there might only be one onion proxy.)

There are three important features of this basic con-

�guration:

� Connections between machines behind onion

routers are protected against both eavesdropping

and tra�c analysis. Since the data stream never

appears in the clear on the public network, this

data may carry identifying information, but com-

munication is still private. (This feature is used

in section 7.1.)

� The onion router at the originating protected site

knows both the source and destination of a con-

nection. This protects the anonymity of con-

nections from observers outside the �rewall but

also simpli�es enforcement of and monitoring for

compliance with corporate or governmental usage

policy.

� The use of anonymous connections between two

sensitive sites that both control onion routers

e�ectively hides their communication from out-

siders. However, if the responder is not in a sen-

sitive site (e.g., the responder is some arbitrary

Web server) the data stream from the sensitive

initiator must also be anonymized. If the con-

nection between the exit funnel and the respond-

ing server is unencrypted, the data stream might

otherwise identify the initiator. For example, an

attacker could simply listen in on the connections

to a Web server and identify initiators of any con-

nection to it.

2.2.2 Remote Proxy Con�guration

What happens if an initiator does not control an onion

router? If the initiator can make encrypted connections

to some remote onion router, then he can function as

if he is in the �rewall con�guration just described, ex-

cept that both observers and the network can tell when

he makes connections to the onion router. However, if

the initiator trusts the onion router to build onions, his

association with the anonymous connection from that

onion router to the responder is hidden from observers

and the network. In a similar way, an encrypted con-

nection from an exit funnel to a responder hides the

3

association of the responder with the anonymous con-

nection .

Therefore, if an initiator makes an anonymous con-

nection to some responder, and layers end-to-end en-

cryption over that anonymous connection, the initia-

tor and responder can identify themselves to one an-

other, yet hide their communication from the rest of

the world. So we can build virtual private networks

without protected sites.

Notice, however, that the initiator trusts the remote

onion router to conceal that the initiator wants to com-

municate with the responder, and to build an anony-

mous connection through other onion routers. The

next section describes how to shift some of this trust

from the �rst onion router to the initiator.

2.2.3 The Customer{ISP Con�guration

Suppose, for example, an Internet Services Provider

(ISP) runs a funnel that accepts connections from

onion proxies running on subscribers' machines. In

this con�guration, users generate onions specifying a

path through the ISP to the destination. Although the

ISP would know who initiates the connection, the ISP

would not know with whom the customer is communi-

cating, nor would it be able to see data content. So the

customer need not trust the ISP to maintain her pri-

vacy. Furthermore, the ISP becomes a common carrier,

who carries data for its customers. This may relieve the

ISP of responsibility both for whom users are commu-

nicating with and the content of those conversations.

The ISP may or may not be running an onion router as

well. If he is running an onion router, then it is more

di�cult to identify connections that terminate with his

customers; however, he is serving as a routing point for

other tra�c. On the other hand, if he simply runs a

funnel to an onion router elsewhere, it will be possible

to identify connections terminating with him, but his

overall tra�c load will be less. Which of these would be

the case for a given ISP would probably depend on a va-

riety of service, cost, and pricing considerations. Note

that in this con�guration the entry funnel must have an

established longstanding connection to an onion router

just like any neighboring onion router. (Cf. section 5.6

for a description of how these are established.) But, in

most other cases, where the funnel resides on the same

machine as the onion router, establishing an encrypted

longstanding connection should not be necessary since

the funnel can be directly incorporated into the onion

router.

3 Empirical Data

We invite readers to experiment with our pro-

totype of onion routing by using it to anony-

mously surf the Web, send anonymous e-mail, and

do remote logins. For instructions please see

http://www.itd.nrl.navy.mil/ITD/5540/projects/

onion-routing/.

One should be aware that accessing a remote onion

router does not completely preserve anonymity, be-

cause the connection between a remote machine and

the �rst onion router is not protected. If that connec-

tion were protected, one would be in the remote proxy

con�guration, but there would would still be no rea-

son to trust the remote onion router. If one had a

secured connection to an onion router one trusted, our

onion router could be used as one of several intermedi-

ate routers to further complicate tra�c analysis.

We have recently set up a thirteen node distributed

network of government, academic, and private sites.

However, at press time we have not yet gathered per-

formance data for this network. The data we present

are for a network running on a single machine. In our

experimental onion routing network, �ve onion routers

run on a single Sun Ultra 2 2170. This machine has two

167 MHz processors, and 256MB of memory. Anony-

mous connections are routed through a random se-

quence of �ve onion routers. Connection setup time

should be comparable to a more distributed topol-

ogy. Data latency, however, is more di�cult to judge.

Clearly, data will travel faster over socket connections

between onion routers on the same machine than over

socket connections between di�erent machines. How-

ever, on a single machine the removal or addition of

layers of encryption is not pipelined, so data latency

may be worse.

Onion routing's overhead is mainly due to public

key cryptography and is incurred while setting up an

anonymous connection. On our Ultra 2 running a fast

implementation of RSA [2], a single public key decryp-

tion of a 1024 bit plaintext block using a 1024 bit pri-

vate key and a 1024 bit modulus takes 90 milliseconds.

Encryption is much faster, because the public keys are

only 16 bits long. (This is why RSA signature veri-

�cation is cheaper than signing). So, the public key

cryptographic overhead for routes spanning �ve onion

routers is just under 0.5 seconds. This overhead can

be further reduced, either with specialized hardware,

or even simply on di�erent hardware (a 200 MHz Pen-

tium would be almost twice as fast).

In practice, our connection setup overhead does not

appear to add intolerably to the overhead of typical

socket connections. Still, it can be further reduced.

4

There is no reason that the same anonymous connec-

tion could not be used to carry the tra�c for several

`real' socket connections, either sequentially or multi-

plexed. In fact, the speci�cation for HTTP 1.1 de�nes

pipelined connections to amortize the cost of socket

setup, and pipelined connections would also transpar-

ently amortize the increased cost of anonymous connec-

tion setup. We are currently updating our Web proxy

to be HTTP 1.1 compliant.

4 Threat Model

This section outlines our threat model. It does not

intend to quantify the cost of attacks, but to de�ne

possible attacks. Future work will quantify the threat.

First some vocabulary. A session is the data carried

over a single anonymous connection. Data is carried

in �xed length cells. Since these cells are multiply en-

crypted and change as they move through an anony-

mous connection, tracking cells is equivalent to track-

ing markers that indicate when cells begin. In a marker

attack, the attacker identi�es the set of outbound con-

nections that some distinguished marker may have

been forwarded upon. By intersecting these sets for

a series of distinguished markers belonging to the same

session, an attacker may determine, or at least narrow,

the set of possible next hops. In a timing attack, the

attacker records a timing signature for a session that

correlates data rate over time. A session may have a

very similar timing signature wherever it is measured

over a route, so cooperating attackers may determine

if they carry a particular session.

We assume that the network is subject to both pas-

sive and active attacks. Tra�c may be monitored and

modi�ed by both external observers and internal net-

work elements, including compromised onion routers.

Attackers may cooperate and share information and in-

ferences. We assume roving attackers that can monitor

part, but not all, of the network at a time.

Our goal is to prevent tra�c analysis, not tra�c con-

�rmation. If an attacker wants to con�rm that two end-

points often communicate, and he observes that they

each connect to an anonymous connection at roughly

the same time, more often than is statistically ex-

pected, it is reasonable to infer that the endpoints are

indeed communicating. Notice that this attack is in-

feasible if endpoints live in protected networks behind

trusted onion routers on �rewalls.

If the onion routing infrastructure is uniformly busy,

then passive external attacks are ine�ective. Speci�-

cally, neither the marker nor timing attacks are feasi-

ble, since external observers cannot assign markers to

sessions. Active attacks are possible since reducing the

load on the system makes the network easier to analyze

(and makes the system not uniformly busy).

Passive internal attacks require at least two com-

promised onion routers. Since onion routers can assign

markers to a session, both the marker and timing at-

tacks are possible. Speci�cally, timing signatures can

be broadcast, and other compromised onion routers can

attempt to �nd connections with matching timing sig-

natures.

Another attack that is only feasible as an internal at-

tack is the volume attack. Compromised onion routers

can keep track of the number of cells that have passed

over any given anonymous connection. They can then

simply broadcast totals to other compromised onion

routers. Cell totals that are close to the same amount

at the same time at di�erent onion routers are likely to

belong to the same anonymous connection.3

Active internal attacks amplify these risks, since in-

dividual onion routers can selectively limit tra�c on

particular connections. An onion router could, for ex-

ample, force a particular timing signature on a connec-

tion, and advertise that signature.

5 Onion Routing Speci�cs

5.1 Onion Routing Proxies

A proxy is a transparent service between two appli-

cations that would usually make a direct socket con-

nection to each other but cannot. For example, a �re-

wall might prevent direct socket connections between

internal and external machines. A proxy running on

the �rewall may enable such connections. Proxy aware

applications are becoming quite common.

Our goal has been to design an architecture for pri-

vate communication that would interface with unmodi-

�ed applications, so we chose to use proxies as the inter-

face between applications and onion routing's anony-

mous connections. For applications that are designed

to be proxy aware, (e.g., WWW browsers), we sim-

ply design appropriate interface proxies. Surprisingly,

for certain applications that are not proxy aware (e.g.,

RLOGIN), we have also been able to design interface

proxies.

Because it is necessary to bridge between applica-

tions and the onion routing network, proxies must un-

derstand both application protocols and onion routing

protocols. Therefore, we modularize the design into

components: the application proxy, the onion proxy,

and the entry funnel. The application proxy bridges

between a socket connection from an application and

3Thanks to Gene Tsudik for noting this attack and for helpful

discussions.

5

a socket connection to the onion proxy. It is the obli-

gation of the application proxy to massage the data

stream so the onion proxy, the entry funnel and the exit

funnel can be application independent. Speci�cally, the

application proxy must prepend to the data stream a

standard structure that identi�es the ultimate destina-

tion by either hostname/port or IP address/port. Ad-

ditionally, it must process a one byte return code from

the exit funnel and either continue if no error is re-

ported or report the onion routing error code in some

application speci�c meaningful way. The application

proxy may also contain an optional privacy �lter for

sanitizing the data stream.

Upon receiving a new request, the onion proxy

builds an onion de�ning the route of an anonymous

connection. (It may use the destination address in

the prepended structure to help de�ne the route.) It

then passes the onion to the funnel, and repeatedly

precrypts the standard structure. Finally, it passes

the precrypted standard structure through the anony-

mous connection to the exit funnel, thus specifying the

ultimate destination. From this point on, the onion

proxy blindly relays data back and forth between the

application proxy and the onion routing network (and

thus the exit funnel at the other end of the anonymous

connection). Of course, it must apply the appropri-

ate keystreams to incoming and outgoing data when

blindly relaying data.

The entry funnel multiplexes connections from onion

proxies to the onion routing network. For the services

we have considered to date, a nearly generic exit funnel

is adequate. Its function is to demultiplex connections

from the last onion router to the outside. When it

reads a data stream from the terminating onion router

the �rst datum received will be the standard structure

specifying the ultimate destination. The exit funnel

makes a socket connection to that IP address/port, re-

ports a one byte status message back to the onion rout-

ing network (and thus back to the onion proxy which

in turn forwards it back to the application proxy), and

subsequently moves data between the onion routing

network and the new socket. (For certain services,

like RLOGIN, the exit funnel also infers that the new

socket must originate from a trusted port.) Entry and

exit funnels are not application speci�c but must un-

derstand the onion routing protocol, which de�nes how

multiplexed connections are handled.

As an example, consider the application proxy for

HTTP. The user con�gures his browser to use the

onion routing proxy. His browser may send the proxy

a request like

GET http://www.domino.com/showcase/ HTTP/1.0

followed by optional �elds.

The application proxy is listening for new requests.

Once it obtains the GET request, it creates the standard

structure and sends it (along a new socket connection)

to the onion proxy, to inform the onion proxy of the

service and destination of the anonymous connection.

The application proxy then modi�es the GET request

to GET /showcase/ HTTP/1.0 and sends it directly

(through the anonymous connection) to the HTTP

server www.domino.com, followed by the optional �elds.

Notice that the server name and http:// are elimi-

nated from the GET request because the connection is

made directly to the HTTP server.

The application proxy essentially makes a connec-

tion to www.domino.com, and issues a request as if it

were a client. Once this request is transmitted to the

server, all proxies blindly forward data in both direc-

tions between the client and the server until the socket

is broken by either side.

For the anonymizing onion routing HTTP proxy, the

application proxy proceeds as outlined above with one

change: it is now necessary to sanitize the optional

�elds that follow the GET command because they may

contain identity information. Furthermore, the data

stream during a connection must be monitored, to san-

itize additional headers that might occur during the

connection. For our current anonymizing HTTP proxy,

operations that store cookies on the user's browser (to

track a user, for example) are removed. This reduces

function, so applications that depend upon cookies

(like online shopping baskets) may not work properly.

5.2 Implementation

This section presents the interface speci�cation be-

tween the components in an onion routing system. To

provide some structure to this speci�cation, we will

discuss components in the order that data would move

from an initiating client to a responding server.

There are four phases in an onion routing sys-

tem: network setup, which establishes the longstanding

connections between onion routers; connection setup,

which establishes anonymous connections through the

onion router network; data movement over an anony-

mous connection; and the destruction and cleanup of

anonymous connections. We will commingle the dis-

cussion of these below.

5.3 Application Proxy

The interface between an application and the ap-

plication proxy is application speci�c. The interface

between the application proxy and the onion proxy is

de�ned as follows. For each new proxy request, the

6

application proxy �rst determines if it will handle or

deny the request. If rejected, it reports an application

speci�c error message and then closes the socket and

waits for the next request. If accepted, it creates a

socket to the onion proxy's well known port. The ap-

plication proxy then sends a standard structure to the

onion proxy of the form:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Version | Protocol | Retry Count | Addr Format |

+-+

Version is currently de�ned to be 1. Protocol is

either 1 for RLOGIN, 2 for HTTP, or 3 for SMTP.

Retry Count speci�es how many times the exit funnel

should attempt to retry connecting to the ultimate des-

tination. Finally, the Addr Format �eld speci�es the

form of the ultimate destination address: 1 for a NULL

terminated ASCII string with the hostname or IP ad-

dress (in ASCII form) immediately followed by another

NULL terminated ASCII string with the destination

port number, and all others currently unde�ned. The

ultimate destination address is sent after this standard

structure, and the application proxy waits for a one

byte error code before sending data.

5.4 Onion Proxy

Upon receiving the standard structure, the onion

proxy can decide whether to accept or reject the re-

quest based on the protocol, destination host, desti-

nation port, or the identity of the application proxy.

If rejected, it sends an appropriate error code back to

the application proxy, closes the socket, and waits for

the next request. If accepted, it proceeds to build the

onion and connects to the entry funnel of the �rst onion

router, through the network, and to the exit funnel of

the last. It next sends the standard structure to the

exit funnel over the anonymous connection, and then

passes all future data to and from the application proxy

and anonymous connection. The repeated pre and post

cryptions and packaging of the standard structure and

subsequent data is discussed later in section 5.6.

5.5 Onions

To build the anonymous connection to the exit fun-

nel, the onion proxy creates an onion. An onion is

a multi-layered data structure that encapsulates the

route of the anonymous connection starting from the

onion router for that exit funnel and working backward

to the onion router at the entry funnel.

Each layer has the following structure:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|0| Version |Back F|Forw F| Destination Port |

+-+

| Destination Address |

+-+

| Expiration Time (GMT) |

+-+

| |

+ +

| |

+ Key Seed Material +

| |

+ +

| |

+-+

As we will see below, the �rst bit must be zero for

RSA public key cryptography to succeed. Following

the zero bit is the Version Number of the onion routing

system, currently de�ned to be 1.

The Back F �eld denotes the cryptographic function

to be applied to data moving in the backward direction

(de�ned as data moving in the direction opposite that

which the onion traveled, usually toward the initiator's

end of the anonymous socket connection) using key2
de�ned below. The Forw F �eld denotes the crypto-

graphic function to be applied to data moving in the

forward direction (de�ned as data moving in the same

direction as that which the onion traveled, usually to-

ward the responder's end of the anonymous socket con-

nection) using key3 de�ned below. Currently de�ned

cryptographic functions are: 0 for Identity (no encryp-

tion), 1 for DES OFB (output feedback mode) (56 bit

key), and 2 for RC4 (128 bit key). The Destination

Address and Destination Port indicate the next onion

router in network order and are both 0 for the exit fun-

nel. The Expiration Time is given in network order in

seconds relative to 00:00:00 UTC January 1, 1970 (i.e.,

standard UNIX time(2) format) and speci�es how long

the onion router at this hop in the anonymous connec-

tion must track the onion against replays before it ex-

pires. Key Seed Material is 128 bits long and is hashed

three times with SHA to produce three cryptographic

keys (key1, key2, and key3) of 128-bits each (the �rst

eight bytes of each SHA output are used for DES and

the �rst 16 bytes for RC4 keys).4

Since we use RSA public key cryptography with a

modulus size of 1024-bits, the plaintext block size is

1024 bits and must be strictly less than the modulus

numerically. To avoid problems, we force this relation

by putting the most-signi�cant bit �rst and setting it

to 0 (the leading 0 above). Furthermore, the inner-

most layer of the onion is padded on the end with an

additional 100 bytes prior to RSA encryption being

4Details on the cryptographic operations used in this paper

can be found in [20, 26].

7

performed.

In version 1, an onion has �ve layers, but routes can

be shorter. An onion is formed iteratively, innermost

layer �rst. At each iteration, the �rst 128 bytes of the

onion are encrypted with the public key of the onion

router that is intended to decrypt that layer. The re-

mainder of the onion is encrypted, using DES OFB

with an IV (initialization vector) of 0 and key1 (de-

rived from Key Seed Material in that layer as de�ned

above).5

Before discussing how onions and data are sent be-

tween onion routers, we will de�ne onion router inter-

connection.

5.6 Onion Router Interconnection

During onion network setup (not to be confused

with anonymous connection setup), longstanding con-

nections between neighboring onion routers are estab-

lished and keyed. The network topology is prede�ned

and each onion router knows its neighbors.

To remain connected to each of its neighbors, onion

routers must both listen for connections from neigh-

bors and attempt to initiate connections to neighbors.

To avoid deadlock and collision issues between pairs of

neighbors, an onion router listens for connections from

neighbors with \higher" IP/port addresses and initi-

ates connections to neighbors with \lower" IP/port ad-

dresses. \Higher" and \Lower" are de�ned with respect

to network byte ordering. (This was an expedient way

to break symmetry. Ultimately we will want a more

exible solution. For example, when an onion router

goes down, it should contact its neighbors upon com-

ing back up. Requiring the neighbors to try to contact

the down router until it responds is less e�cient. This

is not di�cult to implement and we will do so in the

future.)

The protocol has two phases: connection setup and

keying. The initiating onion router opens a socket to

a well known port of its neighboring onion router, and

sends its IP address and well known port (the port is

included to allow multiple onion routers to run on a

single machine) in network order to identify itself. The

keying phase ensues, using STS [9] which will gener-

ate two DES 56-bit keys. The link encryption over the

longstanding connections is done by DES OFB with

IVs of 0 and these two keys (one for data in each di-

rection).

Once keyed, communication between onion routers

is packaged into �xed sized cells , which allows for

5We use DES to encrypt the onion, and for link encryption

between onion routers, because it has no licensing fees and can be

used as a pseudorandom number generator. However, we would

be happy to use a stronger pseudorandom number generator.

the multiplexing of both anonymous connections and

control information over the longstanding connections.

(Cell size was chosen to be compliant with ATM.) In

version 1 of the onion routing system, there are four

types of cells: PADDING (0), CREATE (1), DATA

(2), and DESTROY (3).

Cells have the following structure:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| ACI | Command | Length |

+-+

| |

.......................Payload (44 bytes).......................

| |

+-+

The ACI (anonymous connection identi�er) and

Command �elds are always encrypted using the link

encryption between neighboring nodes. Additionally,

the Length and Payload �elds are encrypted using the

link encryption between neighboring nodes if the com-

mand is either PADDING (0) or DESTROY (3). For

CREATE (1) commands, the length is link encrypted,

but the payload is already encrypted because it car-

ries the onion. For DATA (2) commands, the length

and entire payload are encrypted using the anonymous

connection's forward or backward cryptographic oper-

ations.

Each anonymous connection is assigned an ACI at

each onion router, which labels an anonymous connec-

tion when it is multiplexed over the longstanding con-

nection to the next onion router. ACIs must be unique

on their longstanding connection but need not be glob-

ally unique.

To move an onion through the system, an onion

router peels o� the outermost layer, identifying the

next hop. It checks the freshness (not expired and

not replayed) of the onion, computes the necessary

cryptographic keys, initializes the forward and back-

ward cryptographic engines, chooses a new ACI for

the next hop in the new connection, and then builds a

data structure associated with that connection which

maps incoming to outgoing ACIs and the cryptographic

engines associated with forward and backward data.

Since neighboring onion routers choose ACIs for each

other on the thick pipe that they share, each is assigned

half of the naming space. The neighboring onion router

with a \higher address" chooses ACIs in the top half

of that space, while its neighbor with the lower address

chooses ACIs from the bottom half of that space. After

the outermost layer of onion is peeled o�, the rest of the

onion is padded randomly to its original length, placed

into CREATE cells, and then sent out in order to the

appropriate neighbor. The payload of the last cell is

padded with random bits to �ll the cell if necessary (to

8

avoid traceability).

Data moves through an anonymous connection in

DATA cells. At each onion router both the length and

payload �elds of a cell are crypted using the appro-

priate cryptographic engine. The new cell is sent out

to the appropriate neighbor. The onion proxy must

repeatedly crypt data to either add the appropriate

layers of cryption on outgoing data, or remove layers

of cryption from incoming data. When constructing

a DATA cell from a plaintext data stream, the cell is

(partially) �lled, its true length is set, and all 45 bytes

of the length and payload �elds are repeatedly crypted

using the stream ciphers de�ned by the onion. There-

fore, when the cell arrives at the exit funnel, the length

�eld re
ects the length of the actual data carried in the

payload.

If a connection is broken, a DESTROY command

is sent to clean up state information. The ACI �eld

of the DESTROY command carries the ACI of the

broken connection. The length and payload must be

random. Upon receipt of a DESTROY command, it

is the responsibility of an onion router to forward the

DESTROY appropriately and to acknowledge receipt

by sending another DESTROY command back to the

previous sender. After sending a DESTROY command

about a particular ACI, an onion router may not send

any more cells along that anonymous connection. Once

an acknowledgment DESTROY message is received, an

onion routing node considers the anonymous connec-

tion destroyed and the ACI can be used as a label for

a new anonymous connection.

The PADDING command is used to inject data into

a longstanding socket to further confuse tra�c analysis.

PADDING cells are discarded upon receipt.

Each onion router also reorders cells moving through

it. All cells that arrive at an onion router within a �xed

interval of time on any connection are mixed pseudo-

randomly, except that the order of cells in each anony-

mous connection is preserved.

5.7 Exit Funnel

When a routing node receives an onion with Des-

tination Address and Destination Port of 0, it knows

it is the terminal onion router for the connection and

passes the connection not to another onion router but

to its own exit funnel. The funnel proceeds to read the

standard structure that will be the �rst data across the

anonymous socket connection, establishes a connection

to the ultimate destination as indicated, and returns

the status code. After this, it will blindly forward data

between the anonymous connection and the connection

to the responder's machine.

6 Implementation Vulnerabilities

An implementation of a secure design can be inse-

cure. In this section, we describe several implementa-

tion decisions that were made for security considera-

tions.

Onions are packaged in a sequence of cells that must

be processed together. This onion processing involves a

public key decryption operation which is relatively ex-

pensive. Therefore, it is possible to imagine an imple-

mentation that clears outgoing queues while an onion

is being processed, and then outputs the onion. There-

fore, any period of inactivity on the out-bound queues

is likely to be followed by a sequence of onion cells be-

ing output on a single queue. Such an implementation

makes tracking easier and should be avoided.

After processing at each onion router, onions are

padded at the end to compensate for the removed layer.

This padding must be random, since onions are not

link encrypted between onion routers. Similarly, the

length and payload of a DESTROY command must be

new random content at each onion router; otherwise,

compromised onion routers could track that payload.

In a multi-threaded implementation, there is a sig-

ni�cant lure to rely upon apparent randomness in

scheduling to reorder events. If reordering is impor-

tant to the secure operation of the system, deliberate

reordering is crucial, since low level system randomness

may in fact be predictable.

There are two vulnerabilities for which we do not

have good solutions. If part of the onion routing net-

work is taken down, tra�c analysis may be simpli�ed.

Also, if a longstanding connection between two onion

routers is broken, it will result in many DESTROY

messages, one for each anonymous connection that was

routed through that longstanding connection. There-

fore, a compromised onion router may infer from near

simultaneous DESTROY messages that the associated

anonymous connections had some common route. De-

laying DESTROY messages hurts performance, since

we require that a DESTROY message propagate to the

endpoints to take down the connection that is visible

to the user. Carrying the DESTROY message through

the anonymous connection and garbage collecting dor-

mant anonymous connections later would be ideal, but

we do not know how to e�ciently insert control infor-

mation into a raw data channel, especially consider-

ing our layered encryption. One possibility is for the

onion router on the initiator side of a break to send

some large predetermined number of one bits back to

the initiator followed by a message that the connec-

tion is destroyed. The onion proxy could then check

for such a signal after it strips o� each layer of each

9

packet, and notify the application proxy if it receives

the signal. The initiator can contact the responder out

of band, presumably through another anonymous con-

nection, authenticate itself by some means as the initia-

tor of the broken connection, and notify the responder

of the break. Onion routers can either be noti�ed di-

rectly by the onion proxy after some random delay or

possibly garbage collect least recently used ACIs. We

will continue to explore the feasibility of this and other

possibilities.6

7 Applications

We �rst describe how to use anonymous connection

in VPNs, anonymous chatting services, and anonymous

cash. We then describe onion routing proxies for three

Internet services: Web browsing, e-mail, and remote

logins. These three onion routing proxies have been

implemented. Anonymizing versions of these proxies

that remove the identifying information that may be

present in the headers of these services' data streams

have been implemented as well.

7.1 Virtual Private Networks

If two sites wanted to collaborate, they could estab-

lish one or more long term tunnels that would multiplex

many socket connections, or even raw IP packets, over

a single anonymous connection. This would e�ectively

hide who is collaborating with whom and what they

are working on, without requiring the construction of

an individual anonymous connection for each connec-

tion made. Such long term anonymous connections be-

tween enclaves provide the analog of a leased line over

a public network. Note that the protection provided a

VPN by onion routing is broader than that provided by

encrypting �rewalls. Basic encrypting �rewalls encrypt

payloads only. Thus, they protect con�dentiality, but

do nothing to protect against tra�c analysis. IPSEC

will protect tra�c for individual connections by encap-

sulating packets in encrypted packets from the �rewall,

but this will not protect against institutional level traf-

�c analysis. Communication between two such �rewalls

will still indicate a collaboration between the sites be-

hind them. Constant padding may be added, but this

is very expensive. And, unless many unrelated sites

agree to do it, it still does not hide the existence of

the VPN established between those sites that are so

padding.

6Thanks to Gene Tsudik for some of the fundamental ele-

ments of this proposal.

7.2 Anonymous Chatting

Anonymous connections can be used in a service

similar to IRC, where many parties meet to chat at

some central server. The chat server may mate sev-

eral anonymous connections carrying matching tokens.

Each party de�nes the part of the connection lead-

ing back to itself, so no party has to trust the other

to maintain its privacy. If the communicating parties

layer end-to-end encryption over the mated anonymous

connections, they also prevent the central server from

listening in on the conversation.

7.3 Anonymous Cash

Certain forms of e-cash are designed to be anony-

mous and untraceable, unless they are double spent

or otherwise misused. However, if a customer can-

not contact a vendor without identifying himself, the

anonymity of e-cash is undermined. For transactions

where both payment and product can be conveyed elec-

tronically, anonymous connections can be used to hide

the identities of the parties from one another [27].

How can the customer be prevented from taking his

purchase without paying for it (e.g., by closing the con-

nection early) or the vendor be prevented from taking

the customer's e-cash without completing the transac-

tion? This is a hard problem [12, 4]. In the case of

a well known vendor, a practical solution is to require

customers to pay �rst. The vendor is unlikely to delib-

erately cheat its customers since it may be caught in

an audit.

7.4 Remote Login

We proxy remote login requests by taking advan-

tage of the option -l username to rlogin. The usual

rlogin command is of the form:

rlogin -l username server

To use rlogin through an onion routing proxy, one

would type

rlogin -l username@server proxy

where proxy refers to the onion routing proxy to be

used and both username and server are the same as

speci�ed above. A normal rlogin request is transmitted

from a privileged port on the client to the well known

port for rlogin (513) on the server as:

\0 username on client \0 username on server \0 terminal type \0

where username on client is the username of the in-

dividual invoking the command on the client machine,

username on server is either the -l �eld (if speci�ed) or

10

the username of the individual invoking the command

on the client machine (if no -l is speci�ed), and the

terminal type is a standard termcap/linespeed speci�-

cation. The server responds with a single zero byte if

it will accept the connection or breaks the socket con-

nection if an error has occurred or the connection is

rejected. Our normal rlogin proxy therefore receives

the initial request:

\0 username on client \0 username@server \0 terminal type \0

The proxy creates an anonymous connection to the

RLOGIN port on the server machine and proceeds to

send it a massaged request of the form:

\0 username \0 username \0 terminal type \0

Once this request is transmitted to the server, the

proxy blindly forwards data in both directions between

the client and server until the socket is broken by either

side.

Notice that the onion router does not send the server

the client's username on the client, so communication

is anonymous, unless the data-stream subsequently re-

veals more information.

7.5 Web Browsing

Proxying HTTP requests follows the IETF HTTP

V1.0 Speci�cation [3]. An HTTP request from a client

through an HTTP proxy is of the form:

GET http://www.server.com/file.html HTTP/1.0

followed by optional �elds. Notice that an HTTP

request from a client to a server is of the form:

GET file.html HTTP/1.0

also followed by optional �elds. The server name and

protocol scheme are missing, because the connection is

made directly to the server.

As an example, a complete request from Netscape

Navigator to an onion router HTTP proxy may look

like this:

GET http://www.server.com/file.html HTTP/1.0

Referer: http://www.server.com/index.html

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/3.0 (X11; I; SunOS 5.4 sun4m)

Host: www.server.com

Accept: image/gif, image/x-xbitmap, image/jpeg

The proxy must create an anonymous connection to

www.server.com, and issue a request as if it were a

client. Therefore, the request must be massaged to

remove the server name and scheme, and transmit-

ted to www.server.com over the anonymous connec-

tion. Once this request is transmitted to the server,

the proxy blindly forwards data in both directions be-

tween the client and server until the socket is broken

by either side.

For privacy �ltering of HTTP, the proxy proceeds

as outlined above with one change. It is now neces-

sary to sanitize the optional �elds that follow the GET

command because they may contain identity informa-

tion. Furthermore, the data stream during a connec-

tion must be monitored, to sanitize additional headers

that might occur during the connection.

The Anonymizer [1] also provides anonymous Web

browsing. Users can connect to servers through the

Anonymizer and it strips o� identifying headers. This

is essentially what our �ltering HTTP proxy does.

But packets can still be tracked and monitored. The

Anonymizer could be used as a front end to the onion

routing network to provide e�ective protection against

tra�c analysis. We discuss this further in section 8.

7.6 Electronic Mail

Electronic mail is proxied by utilizing the

user%host@proxy form of e-mail address instead of the

normal user@host form. This form should work with

most current and older mail systems. Under this form,

the client contacts the proxy server's well known SMTP

port (25). Instead of the normal mail daemon listening

to that port, the proxy listens and interprets what it re-

ceives following a strict state machine: wait for a valid

HELO command, wait for a valid MAIL From: command,

and then wait for a valid RCPT To: command. Each

command argument is temporarily bu�ered. Once the

RCPT To: command has been received, the proxy pro-

ceeds to create an anonymous connection to the des-

tination server and relays the HELO and MAIL From:

commands exactly as received. The RCPT To: com-

mand is massaged and forwarded. Any subsequent

RCPT To: commands are rejected. Once the DATA

request is transmitted to the server, the proxy for-

wards data in both directions from the client and

server. An example of e-mail from joe@sender.com

on the machine sender.com to mary@recipient.com

via the onion.com onion router is given below. Joe

types mail mary%recipient.com@onion.com. First

the communications from the client on sender.com to

the onion router SMTP proxy on onion.com is given,

followed by the communications from the exit funnel

to recipient.com:

220 onion.com SMTP Onion Routing Network.

11

HELO sender.com

250-onion.com -- Connection from

250 sender.com (2.0.0.1).

MAIL From: joe@sender.com

250 Sender is joe@sender.com.

RCPT To: mary%recipient.com@onion.com

The proxy massages the RCPT To: line to make the

address mary@recipient.com and makes an anony-

mous connection to recipient.com. It then replays

the massaged protocol to recipient.com:

220-recipient.com Sendmail 4.1/SMI-4.1 ready

220 at Wed, 28 Aug 96 15:15:00 EDT

HELO Onion.Routing.Network

250-recipient.com Hello Onion.Routing.Network

250 [2.0.0.5], pleased to meet you

MAIL From: joe@sender.com

250 joe@sender.com... Sender ok

RCPT To: mary@recipient.com

250 mary@recipient.com... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

At this point, the proxy forwards data in both di-

rections, until a line containing only a period is sent

from the sender to the recipient:

This is a note

.

The proxy forwards the line containing only a period

to the recipient, and forwards the recipient's response

to the sender. At that point, the proxy sends QUIT to

the recipient, reads the response and closes the con-

nection to the recipient. The proxy then waits for a

command from the sender; if that command is QUIT,

the proxy sends a response and closes its connection to

the sender:

250 Mail accepted

QUIT

221 onion.com Service closing transmission channel.

If the command is not QUIT, then it is MAIL, and

the protocol repeats. Anything else prompts an error

response, and the proxy waits for the next correct com-

mand.

For the privacy �ltered proxying of electronic mail,

the proxy proceeds as outlined above with a few

changes. It is now necessary to sanitize both the

MAIL From: command and the header portion of the

actual message body. Sanitization of the MAIL From:

command is trivial with a simple substitution of

anonymous for joe@sender.com. For the header san-

itization, we have taken the conservative approach of

deleting all headers, but this may be modi�ed in the

future to only remove identifying information and leave

the remaining header information intact.

8 Comparisons with Related Work

Chaum [5] de�nes a layered object that routes data

through intermediate nodes, called mixes . These in-

termediate nodes may reorder, delay, and pad tra�c to

complicate tra�c analysis. In mixes, the assumption is

that a single perfect mix adequately complicates tra�c

analysis, but a sequence of multiple mixes is typically

used because real mixes are not ideal. Because of this,

mix applications can use mixes in �xed order, and of-

ten do. Onion routers di�er from mixes in at least two

ways: onion routers are more limited in the extent to

which they delay tra�c at each node because of the

real-time expectations that the applications demand

of socket connections. Also, in a typical onion routing

con�guration, onion routers are also entry points to the

onion routing network, and tra�c entering or exiting

at those nodes may not be visible. This makes it hard

to track packets, because they may drop out of the net-

work at any node, and new packets may be introduced

at each node. While onion routing cannot delay traf-

�c to the extent that mixes can, tra�c between onion

routers is multiplexed over a single channel and is link

encrypted with a stream cipher. This makes it hard to

parse the stream.

Anonymous remailers like Penet [17] strip headers

from received mail and forward it to the intended re-

cipient. They may also replace the sender's address

with some alias, permitting replies. These sorts of re-

mailers store sensitive state: the mapping between the

alias and the true return address. Also, mail forwarded

through a chain of remailers may be tracked because it

appears the same to each remailer.

Mix based remailers like [7, 16] use mixes to provide

anonymous e-mail services. Essentially, the mail mes-

sage is carried in the innermost layer of the onion data

structure. Another onion type structure, used for a re-

turn address, can be contained in the message. This

makes the return path self contained, and the remailer

essentially stateless. Onion routing shares many struc-

tures with Babel [16] but it uses them to build (possibly

long lived) application independent connections. This

makes anonymous connections accessible to a wide va-

riety of applications. For application to e-mail it has

both advantages and disadvantages. Onion routing's

service makes an anonymous connection directly to the

recipient's sendmail daemon. A disadvantage is that,

since the connection is made in real-time, there is less

freedom in mixing, which therefore might not be done

as well. An advantage is that the anonymous connec-

tion is separated from the application, so anonymous

e-mail systems are considerably simpli�ed because the

application speci�c part does not have to move data

12

through the network. Furthermore, because the onion

routing network can carry many types of data, it has

the potential to be more heavily utilized than a net-

work that is devoted only to e-mail. Heavy utilization

is the key to anonymity.

In [10], a structure similar to an onion is used to

forward individual IP packets through a network. By

maintaining tracking information at each router, ICMP

error messages can be moved back along the hidden

route. Essentially, a connection is built for each packet

in a connectionless service. Although a followup paper

[11] suggests that performance will be good, especially

with hardware based public key cryptography, our ex-

perience suggests that both the cryptographic overhead

of building onions and the tracking of onions against

replay is not e�ciently done on a packet-by-packet ba-

sis. However, it is easy to imagine an onion routing

proxy that collects IP packets and forwards them over

some anonymous connection. In this way, communi-

cation is anonymous at the IP layer, but connections

need not be built for each IP packet. This anonymous

IP communication may be more robust than our cur-

rent architecture: it could survive a broken anonymous

connection, since IP does not expect reliable delivery.

In [22], mixes are used to provide untraceable com-

munication in an ISDN network. Here is a summary

of that paper. In a phone system, each telephone line

is assigned to a particular local switch (i.e., local ex-

change), and switches are interconnected by a (long

distance) network. Anonymous calls in ISDN rely upon

an anonymous connection between the caller and the

long distance network. These connections are made

anonymous by routing calls through a prede�ned se-

ries of mixes within each switch. The long distance

endpoints of the connection are then mated to com-

plete the call. (Notice that observers can tell which

local switches are connected.) Also, since each phone

line has a control circuit connection to the switch, the

switch can broadcast messages to each line using these

control circuits. So, within a switch a truly anonymous

connection can be established: A phone line makes an

anonymous connection to some mix. That mix broad-

casts a token identifying itself and the connection. A

recipient of that token can make another anonymous

connection to the speci�ed mix, which mates the two

connections to complete the call.

Our goal of anonymous connections over the Inter-

net di�ers from anonymous remailers and anonymous

ISDN. The data is di�erent, with real-time constraints

more severe than mail, but somewhat looser than voice.

Both HTTP and ISDN connections are bidirectional,

but, unlike ISDN, HTTP connections are likely to be

small requests followed by short bursts of returned

data. Most importantly, the network topology of the

Internet is more akin to the network topology of the

long distance network between switches, where capac-

ity is a shared resource. In anonymous ISDN, the mixes

hide communication within the local switch, but con-

nections between switches are not hidden. This implies

that all calls between two businesses, each large enough

to use an entire switch, reveal which businesses are

communicating. In onion routing, mixing is dispersed

throughout the Internet, which improves hiding.

Pipe-net [8] is a proposal similar to onion routing. It

has not been implemented, however. Pipe-net's threat

model is more paranoid than onion routing's: it at-

tempts to resist active attacks by global observers. For

example, Pipe-net's connections carry constant traf-

�c (to resist timing signature attacks) and disruptions

to any connection are propagated throughout the net-

work.

The Anonymizer is a Web proxy that �lters the

HTTP data stream to remove a user's identifying in-

formation, essentially as our �ltering HTTP proxy

does. For example, the Anonymizer will \strip out

all references to your e-mail address, computer type,

and previous page visited before forwarding your re-

quest" [1]. This makes Web browsing private in the

absence of any eavesdropping or tra�c analysis. The

Anonymizer is vulnerable in three ways: First, it must

be trusted. Second, tra�c between a browser and the

Anonymizer is sent in the clear, so that tra�c identi-

�es the true destination of a query, and includes the

identifying information that the Anonymizer would �l-

ter. Third, even if tra�c between the browser and the

Anonymizer were encrypted, passive external observers

could mount the volume attack mentioned in section 4.

The Anonymizer, however, is now readily available to

everyone on the Web.

NetAngels [21] is similar to the Anonymizer, ex-

cept that it builds personal pro�les of its subscribers

and targets advertisements to match the pro�le. How-

ever, the pro�le is not released to the advertiser and

is deleted when a subscription is canceled. Subscribers

must trust NetAngels, and connections to the service

are subject to the same attacks as the Anonymizer.

LPWA [19, 13] (formerly known as Janus) is a

\proxy server that generates consistent untraceable

aliases for you that enable you to browse the Web,

register at web sites and open accounts, and be `recog-

nized' upon returning to your accounts, all while still

preserving your privacy." Like the previous two, the

LPWA proxy is at a server that is remote from the

user application. It is thus subject to the same trust

and vulnerability limitations.

It is possible, however, to shift trusted elements to

13

the user's machine (or to a machine on the boundary

between his trusted LAN and the Internet). Shifting

trust in this way can improve the security of other

privacy services like the Anonymizer, NetAngels, and

LPWA. Currently, those are centralized to provide an

intermediary that masks the true source of a connec-

tion. If anonymous connections are used to hide the

source address instead, the other functions of these ser-

vices may run as a local proxy on the user's desktop.

Security is improved because privacy �ltering and other

services are done on a trusted machine and because

communication is resistant to tra�c analysis. Also,

there is no central point of failure.

Another approach to anonymous Web connections

is Crowds [25]. Crowds is essentially a distributed

and chained Anonymizer, with encrypted links between

crowd members. Web tra�c is forwarded to a crowd

member, who
ips a weighted coin and, depending on

the result, forwards it either to some other crowd mem-

ber or to the destination. This makes communication

resistant to local observers.

9 Conclusion

This paper describes anonymous connections, their

realization in onion routing, and some of their appli-

cations. Anonymous connections are resistant to both

eavesdropping and tra�c analysis. They separate the

anonymity of the connection from the anonymity of

communication over that connection. For example,

two parties controlling onion routers can identify them-

selves to each other without revealing the existence of

a connection between them. This paper demonstrates

the versatility of anonymous connections by exploring

their use in a variety of Internet applications. These ap-

plications include standard Internet services like Web

browsing, remote login, and electronic mail. Anony-

mous connections can also be used to support virtual

private networks with connections that are resistant to

tra�c analysis and that can carry connectionless traf-

�c.

Anonymous connections may be used as a new prim-

itive that enables novel applications in addition to facil-

itating secure versions of existing services [24]. Besides

exploring other novel applications, future work includes

a system redesign to improve throughput and an im-

plementation of reply onions [15, 23]. Reply onions

are basically reply addresses that enable connections

to be established back to an anonymous party. We will

be implementing other mechanisms for responding to

anonymous connections as well. We are also beginning

a detailed analysis of onion routing to enable a quan-

titative assessment of resistance to tra�c analysis.

The onion routing network supporting anonymous

connections can be con�gured in several ways, includ-

ing a �rewall con�guration and a customer-ISP con�gu-

ration, which moves privacy to the user's computer and

may relieve the carrier of responsibility for the user's

connections.

Onion routing moves the anonymous communica-

tions infrastructure below the application level, prop-

erly separating communication and applications. Since

the e�cacy of mixes depends upon su�cient network

tra�c, allowing di�erent applications to share the same

communications infrastructure increases the ability of

the network to resist tra�c analysis.

Acknowledgments

We have had helpful comments from and discussion

with people too numerous to mention. We note espe-

cially the help of Birgit P�tzmann, Gene Tsudik, and

James Washington. We also thank the anonymous ref-

erees, the Levien family for hosting the onion dinner,

and the Isaac Newton Institute for hosting one of the

authors while some of this work was done. The fast

UltraSparc implementation of RSA was done by Tolga

Acar and C�etin Kaya Ko�c. This work was supported

by ONR and DARPA.

References

[1] The Anonymizer. http://www.anonymizer.com

[2] T. Acar, B. S. Kaliski, Jr., and C� . Ko�c. \Analyzing

and Comparing Montgomery Multiplication Algo-

rithms", IEEE Micro, 16(3):26-33, June 1996.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk. Hy-

pertext Transfer Protocol { HTTP/1.0,

ftp://ds.internic.net/rfc/rfc1945.txt

[4] L. J. Camp, M. Harkavey, B. Yee, J. D. Ty-

gar, \Anonymous Atomic Transactions", Sec-

ond USENIX Workshop on Electronic Commerce,

1996.

[5] D. Chaum. \Untraceable Electronic Mail, Return

Addresses, and Digital Pseudonyms", Communi-

cations of the ACM , v. 24, n. 2, Feb. 1981, pp.

84-88.

[6] D. E. Comer. Internetworking with TCP/IP,

Volume 1: Principles, Protocols, and Architec-

ture, Prentice{Hall, Engelwood Cli�s, New Jersey,

1995.

14

[7] L. Cottrell. Mixmaster and Remailer Attacks,

http://obscura.obscura.com/~loki/remailer

/remailer-essay.html

[8] W. Dai. Pipe-net, February 1995, post to the

cypherpunks mailing list.

[9] Whit�eld Di�e, Paul C. van Oorschot, and

Michael J. Wiener. \Authentication and Authenti-

cated Key Exchanges". Designs, Codes, and Cryp-

tography, 2:107{125, 1992.

[10] A. Fasbender, D. Kesdogan, O. Kubitz. \Vari-

able and Scalable Security: Protection of Loca-

tion Information in Mobile IP", 46th IEEE Ve-

hicular Technology Society Conference, Atlanta,

March 1996.

[11] A. Fasbender, D. Kesdogan, O. Kubitz. \Analysis

of Security and Privacy in Mobile IP", 4th Interna-

tional Conference on Telecommunication Systems

Modeling and Analysis , Nashville, March 1996.

[12] M. Franklin and M. Reiter, \Fair Exchange with a

Semi-Trusted Third Party", Fourth ACM Confer-

ence on Computer and Communications Security ,

Zurich, April 1997.

[13] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer.

\How to Make PersonalizedWeb Browsing Simple,

Secure, and Anonymous", Financial Cryptography

'97 , February 1997, �nal proceedings to appear.

[14] D. Goldschlag, M. Reed, and P. Syverson. \Pri-

vacy on the Internet", INET '97, Kuala Lumpur,

June 1997.

[15] D. Goldschlag, M. Reed, P. Syverson. \Hiding

Routing Information", in Information Hiding , R.

Anderson, ed., LNCS vol. 1174, Springer-Verlag,

1996, pp. 137{150.

[16] C. G�ulc�u and G. Tsudik. \Mixing Email with Ba-

bel", 1996 Symposium on Network and Distributed

System Security , San Diego, February 1996.

[17] J. Helsingius. www.penet.�.

[18] Internet Engineering Task Force.

http://www.ietf.org/

[19] http://lpwa.com:8000/

[20] A. Menezes, P. van Oorschot, and S. Vanstone.

Handbook of Applied Cryptography , CRC Press,

1997.

[21] http://www.netangels.com

[22] A. P�tzmann, B. P�tzmann, and M. Waidner.

\ISDN-Mixes: Untraceable Communication with

Very Small Bandwidth Overhead", GI/ITG Con-

ference: Communication in Distributed Systems ,

Mannheim Feb, 1991, Informatik-Fachberichte

267, Springer-Verlag, Heidelberg 1991, pp. 451-

463.

[23] M. G. Reed, P. F. Syverson, and D. M. Goldschlag.

\Proxies for Anonymous Routing", Proc. 12th An-

nual Computer Security Applications Conference,

San Diego, CA, IEEE CS Press, December, 1996,

pp. 95{104.

[24] M. Reed, P. Syverson, and D. Goldschlag. \Proto-

cols using Anonymous Connections: Mobile Ap-

plications", 1997 Security Protocols Workshop,

Paris, April 1997, �nal proceedings to appear.

[25] M. Reiter and A. Rubin. Crowds: Anonymity for

Web Transactions (preliminary announcement),

DIMACS Technical Reports 97-15, April 1997.

[26] B. Schneier. Applied Cryptography: Protocols, Al-

gorithms and Source Code in C, John Wiley and

Sons, 1994.

[27] D. Simon, \Anonymous Communication and

Anonymous Cash", in Advances in Cryptology{

CRYPTO`96 , N. Koblitz, ed., LNCS vol. 1109,

Springer-Verlag, 1996, pp. 61{73.

[28] P. Syverson, D. Goldschlag, and M. Reed.

\Anonymous Connections and Onion Routing",

Proceedings of the 1997 IEEE Symposium on Se-

curity and Privacy , Oakland, CA, IEEE CS Press,

May 1997, pp. 44{54.

15

