
Private Web Browsing

Paul F. Syverson, Michael G. Reed, and David M. Goldschlag �

Naval Research Laboratory

June 2, 1997

Abstract

This paper describes a communications primitive, anonymous connec-

tions, that supports bidirectional and near real-time channels that are

resistant to both eavesdropping and tra�c analysis. The connections are

made anonymous, although communication need not be. These anony-

mous connections are versatile and support private use of many di�erent

Internet services. For our purposes, privacy means maintaining the con-

�dentiality of both the data stream and the identity of communicating

parties. These are both kept con�dential from network elements as well

as external observers. Private Web browsing is achieved by unmodi�ed

Web browsers using anonymous connections by means of HTTP proxies.

Private Web browsing may be made anonymous too by a specialized proxy

that removes identifying information from the HTTP data stream. This

article speci�es anonymous connections, describes our implementation,

and discusses its application to Web browsing via HTTP proxies.

Keywords: Security, privacy, anonymity, tra�c analysis.

1 Introduction

As the Internet rapidly becomes an important vehicle for moving data, as well as

the foundation for many virtual private networks, it is becoming apparent that

data moving over the Internet must be protected from eavesdropping. However,

the simple fact that two parties are communicating is a source of information,

and this information is not hidden by encrypting the data stream. We mean to

expand the notion of privacy to include con�dentiality of both the data stream

and the identity of communicating parties. Ordinarily, privacy is taken to mean

only con�dentiality of the data stream. Furthermore, we must protect this

(expanded) privacy from both network elements and external observers. This

�Address: Naval Research Laboratory, Center For High Assurance Computer Systems,

Washington, D.C. 20375-5337, USA, phone: +1 202.767.2389, fax: +1 202.404.7942, e-mail:

flast nameg@itd.nrl.navy.mil.

1



requires protecting against tra�c analysis. Outside the military, the threat of

tra�c analysis has been largely ignored. However, tra�c analysis is becoming

a signi�cant threat to privacy:

� The browsing behavior of Web users is increasingly subject to public ob-

servation both by observers of the Internet and the servers that hold Web

information. As Web based commerce becomes more prevalent, this be-

havior will include individual's shopping habits and spending patterns,

as well as other personal data that people have traditionally considered

private. Where one conducts one's shopping should not automatically be

available to network observers, and the identity of a shopper should not

be automatically revealed to the store. Unless steps are taken to pro-

tect against both eavesdropping and tra�c analysis, this information is

available.

� Certain electronic money protocols are supposed to allow secure transac-

tions over the Web while preserving the untraceability that cash allows.

However, if the electronic cash moves over a channel that identi�es the

purchaser, transactions are no longer anonymous.

� The Web is becoming an important source for information gathering. In

a competitive environment, a company may wish to protect its current

research interests. However, monitoring Web requests may indicate the

company's focus. By keeping Web browsing private, the company's inter-

ests are protected while allowing completely transparent Web use.

This article describes a communications primitive, anonymous connections,
which provides the function of TCP/IP socket connections but is also strongly

resistant to both active and passive eavesdropping and tra�c analysis attacks

from observers both outside and inside the communications network. The con-

nections are made anonymous, although communication need not be. Socket

connections are near real-time bidirectional communication channels. The prin-

ciples behind these anonymous connections can be applied to many circuit based

communication and can be adopted to hide location information too (e.g., in

cellular phone systems).

We also describe an implementation of anonymous connections, called onion
routing and describe how it may be used by a variety of unmodi�ed Internet

services by means of proxies. For example, most Web browsers are proxy aware

(to communicate through a �rewall) and can use onion routing by means of

a simple onion routing HTTP proxy. Private Web browsing may be made

anonymous too by a specialized proxy that removes identifying information

from the HTTP data stream. Both the onion routing system and proxies for

Web browsers, remote login, and electronic mail have been implemented for Sun

Solaris, and the code is available to the public.

2



This paper is organized in the following way: Section 2 presents an overview

of the onion routing system and discusses our threat model and the system's vul-

nerabilities. Section 3 describes proxies for Web browsing. Section 4 describes

related work. Section 5 presents concluding remarks.

2 Onion Routing

In a basic onion routing network con�guration, an onion router might sit on

the �rewall of a protected site. This onion router serves as an interface between

machines behind the �rewall and the rest of the network. To complicate tracking

of tra�c originating or terminating within the protected site, this onion router

should also route data between other onion routers.

In onion routing, instead of making a socket connection directly to a respond-

ing machine (the responder), an initiating application (the initiator) makes

a connection through a sequence of machines called onion routers. Onion

routers are essentially bidirectional near real time mixes [3] (see section 4).

Onion routers in the network are connected by longstanding socket connec-

tions. Anonymous connections through the network are multiplexed over the

longstanding connections. For any anonymous connection, the sequence of onion

routers in a route is strictly de�ned. However, each onion router can only iden-

tify the previous and next hops along a route. Data passed along the anonymous

connection appears di�erent at each onion router, so data cannot be tracked en

route and compromised onion routers cannot cooperate.

The onion routing network is accessed via proxies. An initiating application

makes a socket connection to an application speci�c proxy. That proxy de�nes

a (perhaps random) route through the onion routing network by constructing

a layered data structure called an onion and sending that onion through the

network. Each layer of the onion in public key encrypted for the intended onion

router and de�nes the next hop in a route. An onion router that receives an

onion peels o� its layer, identi�es the next hop, and sends the remaining onion to

that onion router. An onion's size is �xed, and each onion router adds random

padding to replace the removed layer. After sending the onion, the initiator's

proxy sends data through the anonymous connection.

The last onion router forwards data to another type of proxy, called the

responder's proxy, whose job is to pass data between the onion network and

the responder. An example onion routing network and with an anonymous

connection from an initiator to a responder through onion routers W, X, Y, and

Z is illustrated in �gure 1.

In addition to carrying next hop information, each onion layer contains key

seed material from which keys are generated for crypting1 data sent forward or

backward in the anonymous connection. (We de�ne forward to be the direction

1We de�ne the verb crypt to mean the application of a cryptographic operation, be it

encryption or decryption.

3



W is a
Proxy/Routing

Node controlled by
Secure Site

InternetSecure Site

Proxy/Onion Router

W X U

Y ZInitiator
Machine

Responder
Machine

Onion Router

Link Encrypted Connection Between Onion Routers
Anonymous Connection from W to Z

Figure 1: Routing Topology.

in which the onion travels and backward as the opposite direction.) Figure 2 is an
onion that the initiator's proxy living on onion router W would create to build

a route to the responder's proxy living on onion router Z through onion routers

X and Y . Onion routers must recognize onions that they processed (until

they expire) to prevent replay of onions. The expiration time is speci�ed in the

exp time �eld. Clocks on di�erent onion routers need not be closely synchronized

if the expiration time is adequately conservative. (A longer expiration time

requires more storage at an onion router, however.)

Before sending data over an anonymous connection, the initiator's onion

router adds a layer of encryption for each onion router in the route. As data

moves through the anonymous connection, each onion router removes one layer

of encryption, so it �nally arrives as plaintext. (This layering occurs in the

reverse order for data moving back to the initiator.) Stream ciphers are used

for all symmetric cryptography both to prevent replay attacks and to compli-

cate data tracking.2 Unlike the peeling of onions themselves, removing a layer

of encryption does not change the size of a data packet. Onion routers also

randomly reorder the data they receive before forwarding it (but preserve the

2We assume that the underlying network, TCP/IP streams, provides in-order and uncor-

rupted data delivery.

4



exp_timex,Y,Key Seedx,

exp_timey,Z,Key Seedy,

exp_timez,NULL,Key Seedz

X

Y

Z

Figure 2: A Forward Onion.

order of data in each anonymous connection) so it is not possible to track data

under a FIFO assumption, for example.

By layering cryptographic operations in this way we gain an advantage over

simple link encryption. Even though the total cryptographic overhead for pass-

ing data is the same as for link encryption, the protection is better than link

encryption. In link encryption the chain is as strong as the weakest link: one

compromised node can reveal everything. In onion routing the chain is as strong

as its strongest link: one honest node is enough to maintain the privacy of the

connection. Even if link encryption is layered over end-to-end encryption, com-

promised nodes can cooperate to uncover route information. This is not possi-

ble in the onion routing network since data always appears di�erent to di�erent

onion routers.

The current system does not manage the distribution or updating of long

term public keys or network topology.

2.1 Threat Model

This section outlines our threat model. It does not intend to quantify the cost

of attacks, but to de�ne possible attacks. Future work will quantify the threat.

First some vocabulary. A session is the data carried over a single anonymous

connection. Data is carried in �xed length cells. Since these cells are multiply

encrypted and change as they move through an anonymous connection, tracking

cells is equivalent to tracking markers that indicate when cells begin. In a

marker attack, the attacker identi�es the set of outbound connections that some

distinguished marker may have been forwarded upon. By intersecting these sets

for a series of distinguished markers belonging to the same session, an attacker

may determine, or at least narrow, the set of possible next hops. In a timing

attack, the attacker records a timing signature for a session that correlates data

5



rate over time. A session may have a very similar timing signature wherever it

is measured over a route, so cooperating attackers may determine if they carry

a particular session.

We assume that the network is subject to both passive and active attacks.

Tra�c may be monitored and modi�ed by both external observers and internal

network elements, including compromised onion routers. Attackers may coop-

erate and share information and inferences. We assume roving attackers that

can monitor part, but not all, of the network at a time.

Our goal is to prevent tra�c analysis, not tra�c con�rmation. If an attacker

wants to con�rm that two endpoints often communicate, and he observes that

they each connect to an anonymous connection at roughly the same time more

often than is statistically expected, it is reasonable to infer that the endpoints

are indeed communicating. Notice that this attack is infeasible if endpoints live

in protected networks behind onion routers.

If the onion routing infrastructure is uniformly busy, then passive external

attacks are ine�ective. Speci�cally, neither the marker nor timing attacks are

feasible, since external observers cannot assign markers to sessions. Active at-

tacks are possible since reducing the load on the system makes the network

easier to analyze (and makes the system not uniformly busy).

Passive internal attacks require at least two compromised onion routers.

Since onion routers can assign markers to a session, both the marker and tim-

ing attacks are possible. Speci�cally, timing signatures can be broadcast, and

other compromised onion routers can attempt to �nd connections with matching

timing signatures.

Active internal attacks amplify these risks, since individual onion routers

can selectively limit tra�c on particular connections. An onion router could,

for example, force a particular timing signature on a connection, and advertise

that signature.

The initiator's proxy, which builds the onion de�ning the route of the anony-

mous connection, is the most trusted element of the onion routing infrastructure.

By moving this proxy to the initiator's machine [15], this trusted function may

be placed under the control of the initiator. In this topology, the �rst onion

router becomes a conduit to the rest of the network; that �rst onion router

knows the source, but not the destination of a connection.

By layering end-to-end encryption over an anonymous connection, endpoints

may identify themselves to one another without revealing the existence of their

communication to the rest of the network. This emphasizes that our goal here

is to prevent tra�c analysis, not to enable anonymous communication.

3 Web Browsing

A proxy is a transparent service between two applications that would usually

make a direct socket connection to each other but cannot. For example, a

6



�rewall might prevent direct socket connections between internal and external

machines, and a proxy, running on the �rewall, may enable the connection.

Proxy aware applications are becoming quite common.

Our goal has been to design an architecture for private communication that

would interface with unmodi�ed applications, so we chose to use the proxy

approach as the interface between applications and onion routing's anonymous

connections. For applications that are designed to be proxy aware, (e.g., WWW

browsers), we simply design appropriate interface proxies. Surprisingly, for cer-

tain applications that are not proxy aware (e.g., RLOGIN), we have also been

able to design interface proxies.

In a simple case, for example, where a �rewall lives between a trusted and

untrusted network, the �rst onion router and its proxies live on the �rewall.

There are two classes of proxies: one that makes connections from initiating

applications into the onion routing network, and the other that completes the

connection from the onion routing network to responders. These two classes of

proxies also move data from applications to the routing system and vice versa.

For the services we have considered, a nearly generic responder proxy is

adequate. Its function is to read the data stream from the terminating onion

router. The �rst datum identi�es the desired service and responder's machine

name. From that datum, the responder's proxy can determine the responder's

IP address and port number. The responder's proxy makes a socket connection

to that IP/port, and subsequently moves data between the onion network and

the new socket. (For certain services, like rlogin, the responder's proxy also

infers that the new socket must originate from a trusted port.)

Because an initiator's proxy bridges between applications and the onion rout-

ing network, it must understand both application protocols and onion routing

protocols. Therefore, to simplify the design of application speci�c proxies, we

partition this function into two, the client proxy and the core proxy . The client
proxy bridges between a socket connection from an application and a socket

connection to the core proxy in a one-to-one fashion. It is the obligation of

the client proxy to massage the data stream so the responder's proxy can be

application independent. For instance, the client proxy must prepend the data

stream with a datum identifying the desired service and responder's machine

name.

Proxying HTTP requests follows the IETF HTTP V1.0 Draft Speci�cation

[2]. An HTTP request from a client through an HTTP proxy is of the form:

GET http://www.server.com/file.html HTTP/1.0

followed by optional �elds. Notice that an HTTP request from a client to a

server is of the form:

GET file.html HTTP/1.0

7



also followed by optional �elds. The server name and protocol type are

missing, because the connection is made directly to the server.

As an example, a complete request from Netscape Navigator to an onion

router HTTP proxy may look like this:

GET http://www.server.com/file.html HTTP/1.0

Referer: http://www.server.com/index.html

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/3.0 (X11; I; SunOS 5.4 sun4m)

Host: www.server.com

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg

The proxy must create an anonymous connection to www.server.com, and

issue a request as if it were a client. Therefore, the request must be massaged to

remove the server name and protocol type, and transmitted to www.server.com

over the anonymous connection. Once this request is transmitted to the server,

the proxy blindly forwards data in both directions between the client and server

until the socket is broken by either side.

For the anonymizing proxy of HTTP, the proxy proceeds as outlined above

but also sanitizes the optional �elds that follow the GET command because they

may contain identifying information. For example, we �lter out cookies. Fur-

thermore, the data stream during a connection must be monitored, to sanitize

additional headers that might occur during the connection.

4 Related Work

Chaum [3] de�nes a layered object that routes data through intermediate nodes,

called mixes. These intermediate nodes may reorder, delay, and pad tra�c to

complicate tra�c analysis. In mixes, the assumption is that a single perfect

mix adequately complicates tra�c analysis, but a sequence of multiple mixes is

typically used because real mixes are not ideal. Because of this, mix applications

can use mixes in �xed order, and often do. Onion routers di�er frommixes in at

least two ways: onion routers are more limited in the extent to which they delay

tra�c at each node because of the real-time expectations that the applications

demand of socket connections. Also, in a typical onion routing con�guration,

onion routers are also entry points to the onion routing network, and tra�c

entering or exiting at those nodes is not visible. This makes it hard to track

packets, because they may drop out of the network at any node, and new packets

may be introduced at each node. While onion routing cannot delay tra�c to

the extent that mixes can, tra�c between onion routers is multiplexed over a

single channel and is link encrypted with a stream cipher. This makes it hard

to parse the stream.

Anonymous remailers like Penet [11] strip headers from received mail and

forward it to the intended recipient. They may also replace the sender's address

8



with some alias, permitting replies. These sorts of remailers store sensitive

state: the mapping between the alias and the true return address. Also, mail

forwarded through a chain of remailers may be tracked because it appears the

same to each remailer.

Mix based remailers like [4, 10] use mixes to provide anonymous e-mail

services. Essentially, the mail message is carried in the innermost layer of the

onion data structure. Another onion type structure, used for a return address,

can be contained in the message. This makes the return path self contained, and

the remailer essentially stateless. Onion routing shares many structures with

Babel [10] but it uses them to build (possibly long lived) application independent

connections. This makes anonymous connections accessible to a wide variety of

applications.

In [6], a structure similar to an onion is used to forward individual IP pack-

ets through a network. By maintaining tracking information at each router,

ICMP error messages can be moved back along the hidden route. Essentially,

a connection is built for each packet in a connectionless service. Although

a followup paper [7] suggests that performance will be good, especially with

hardware based public key cryptography, our experience suggests that both the

cryptographic overhead of building onions and the tracking of onions against

replay is not e�ciently done on a packet-by-packet basis. However, it is easy

to imagine an onion routing proxy that collects IP packets and forwards them

over some anonymous connection. In this way, communication is anonymous at

the IP layer, but connections need not be built for each IP packet. This anony-

mous IP communication may be more robust than our current architecture: it

could survive a broken anonymous connection, since IP does not expect reliable

delivery.

In [14], mixes are used to provide untraceable communication in an ISDN

network. Here is a summary of that paper. In a phone system, each telephone

line is assigned to a particular local switch (i.e., local exchange), and switches

are interconnected by a (long distance) network. Anonymous calls in ISDN

rely upon an anonymous connection between the caller and the long distance

network. These connections are made anonymous by routing calls through a

prede�ned series of mixes within each switch. The long distance endpoints of

the connection are then mated to complete the call. (Notice that observers can

tell which local switches are connected.) This approach relies upon two unique

features of ISDN switches. Since each phone line has a subset of the switch's

total capacity pre-allocated to it, there is no (real) cost associated with keeping

a phone line active all the time, either by making calls to itself, to other phone

lines on the same switch, or to the long distance network. Keeping phone lines

active complicates tra�c analysis because an observer cannot track coincidences.

Also, since each phone line has a control circuit connection to the switch,

the switch can broadcast messages to each line using these control circuits.

So, within a switch a truly anonymous connection can be established: A phone

line makes an anonymous connection to some mix. That mix broadcasts a token

9



identifying itself and the connection. A recipient of that token can make another

anonymous connection to the speci�ed mix, which mates the two connections

to complete the call.

Our goal of anonymous connections over the Internet di�ers from anonymous

remailers and anonymous ISDN. The data is di�erent, with real-time constraints

more severe than mail, but somewhat looser than voice. Both HTTP and ISDN

connections are bidirectional, but, unlike ISDN, HTTP connections are likely to

be small requests followed by short bursts of returned data. As described in [14],

in a local switch, capacity is pre-allocated to each phone line, and broadcasting is

e�cient. But broadcasting over the Internet is not free, and de�ning broadcast

domains is not trivial. Most importantly, the network topology of the Internet

is more akin to the network topology of the long distance network between

switches, where capacity is a shared resource. In anonymous ISDN, the mixes

hide communication within the local switch, but connections between switches

are not hidden. This implies that all calls between two businesses, each large

enough to use an entire switch, reveal which businesses are communicating.

In onion routing, mixing is dispersed throughout the Internet, which improves

hiding.

The Anonymizer [1] is a Web proxy that �lters the HTTP data stream to

remove a user's identifying information. This makesWeb browsing private in the

absence of any eavesdropping or tra�c analysis. The Anonymizer is vulnerable

in three ways: It must be trusted. Second, tra�c between a browser and the

Anonymizer is sent in the clear, so that tra�c identi�es the true destination of

a query, and includes the identifying information that the Anonymizer would

�lter. Third, even if the tra�c between the browser and the Anonymizer were

encrypted, tra�c analysis could be used to match incoming (encrypted) data

with outgoing data. The Anonymizer, however, is now readily available to

everyone on the Web. It could be used together with onion routing as the HTTP

proxy front end to provide a nice interface and good �ltering for anonymity, with

strong resistance to both eavesdropping and tra�c analysis.

NetAngels [13] is similar to the Anonymizer, except that it builds personal

pro�les of its subscribers and targets advertisements to match the pro�le. How-

ever, the pro�le is not released to the advertiser and is deleted when a sub-

scription is canceled. Subscribers must trust NetAngels, and connections to the

service are subject to the same attacks as the Anonymizer.

LPWA [12, 8] (formerly known as Janus) is a \proxy server that generates

consistent untraceable aliases for you that enable you to browse the Web, register

at web sites and open accounts, and be `recognized' upon returning to your

accounts, all while still preserving your privacy."
Pipe-net [5] is the proposal most similar to onion routing. It has not been

implemented, however. Pipe-net's threat model is more paranoid than onion

routing's: it attempts to resist active attacks by global observers. For example,

Pipe-net's connections carry constant tra�c (to resist timing signature attacks)

and disruptions to any connection are propagated throughout the network.

10



Crowds [17] is essentially a distributed and chained Anonymizer, with en-

crypted links between crowd members. Web tra�c is forwarded to a crowd

member, who can either forward it to some other crowd member or to the

destination. This makes communication resistant to local observers.

5 Conclusion

The behavior of Web users is increasingly subject to public observation by ob-

servers of the Internet, by servers that hold Web information, and by other net-

work elements. As Web based commerce becomes more prevalent, this behavior

will include individual's shopping habits and spending patterns, the identities

of e-mail correspondents, as well as other personal data that people have tra-

ditionally considered private. A personal pro�le of one's behavior should be

considered private in the same sense that one's credit card numbers and social

security numbers are.

Onion routing's anonymous connections provide a communications infras-

tructure that is strongly resistant to both eavesdropping and tra�c analysis.

Onion routing accomplishes this goal by separating identi�cation from routing.

The connections are anonymous, although communication need not be. The

onion routing infrastructure can be used for private Web browsing by means of

proxies.

Privacy �lters like the Anonymizer, LPWA, and NetAngels have two func-

tions. One is to provide connections to the outside world that do not implicitly

reveal the original source. The other is to manage and limit distribution of

individual's private information. These privacy �lters accomplish these goals by

means of centralized public proxies. This creates a single point of vulnerability

(and an attractive attack target). Furthermore, users must trust the centralized

proxy.

We feel that services such as these are very important for managing private

information, but the anonymous connections should be a separate function. The

service these systems deliver could be improved (and simpli�ed) by moving the

�ltering proxy to the user's workstation and connecting it to the outside network

using anonymous connections. This places trusted function and information

under the user's local control. Such partitioning works even when the �lter

provides the added function of pro�ling. The pro�le would also be collected

locally, and the relevant subset of the pro�le may be shared, anonymously of

course, with some other centralized service [19].

Onion routing has been implemented and its code is in the public domain.

One can evaluate the performance of our implementation in several ways. Con-

nection setup will always be relatively expensive, as long as public key cryptog-

raphy is expensive. Implementations of public key cryptography in hardware

would achieve a signi�cant improvement. On our test machine, a 167Mhz Sun

Ultrasparc, the public key cryptography necessary for onion processing takes

11



roughly 0.5 seconds. Since Web response is quite variable, we rarely notice in-

creased overhead for connection setup. Data throughput in our system depends

on the speed of the symmetric cryptographic engine. On the Ultrasparc, we

observe DES speeds of roughly 1MB/sec. Notice that the multiple encryptions,

both at the initiator's proxy, and at the series of onion routers can be e�ectively

pipelined. And, it is easy to implement engines that are faster than typical

modem connections to the Internet.

Furthermore, on the Web, reading a typical page requires several simulta-

neous or consecutive socket connections. There is no reason that these socket

connections cannot all use the same anonymous connection, either by concur-

rent multiplexing or sequential reuse. This amortizes the setup cost. In fact,

HTTP 1.1 does this with pipelined connections to reduce the cost and number

of socket connections. So, an HTTP 1.1 compliant proxy would reduce the load

on the onion routing infrastructure also.

This system depends upon heavy use by a wide audience to achieve e�ective

privacy. Unless an organization's goal is only to hide its internal communication

patterns, multiple organizations should share an onion routing network. Onion

routers owned by individual organizations should also be intermediate onion

routers for the rest of the network.

In the past, access to networked machine services was granted, in part, based

on identifying information in packet headers. This approach has been a signi�-

cant source of security vulnerabilities and should be abandoned for most services.

In onion routing, the anonymous connection carries no identifying or authenti-

cating information. Any authenticating information must be in the data stream

where it belongs.

References

[1] http://www.anonymizer.com

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol {
HTTP/1.0, ftp://ds.internic.net/rfc/rfc1945.txt

[3] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms, Communications of the ACM, v. 24, n. 2, Feb. 1981, pages

84-88.

[4] L. Cottrell. Mixmaster and Remailer Attacks,
http://obscura.obscura.com/eloki/remailer/remailer-essay.html

[5] W. Dai. Pipe-net, February 1995, post to the cypherpunks mailing list.

[6] A. Fasbender, D. Kesdogan, O. Kubitz. Variable and Scalable Security:
Protection of Location Information in Mobile IP, 46th IEEE Vehicular

Technology Society Conference, Atlanta, March 1996.

12



[7] A. Fasbender, D. Kesdogan, O. Kubitz. Analysis of Security and Privacy
in Mobile IP, 4th International Conference on Telecommunication Systems

Modeling and Analysis, March 1996, Nashville, USA.

[8] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer. How to Make Personal-
ized Web Browsing Simple, Secure, and Anonymous, Financial Cryptogra-
phy '97, February 1997.

[9] D. Goldschlag, M. Reed, P. Syverson. Hiding Routing Information, in Infor-
mation Hiding, R. Anderson, ed., LNCS vol. 1174, Springer-Verlag, 1996,

pp. 137{150.

[10] C. G�ulc�u and G. Tsudik. Mixing Email with Babel, 1996 Symposium on

Network and Distributed System Security, San Diego, February 1996.

[11] J. Helsingius. www.penet.�.

[12] http://www.bell-labs.com/project/lpwa

[13] http://www.netangels.com

[14] A. P�tzmann, B. P�tzmann, and M. Waidner. ISDN-Mixes: Untrace-
able Communication with Very Small Bandwidth Overhead, GI/ITG Con-

ference: Communication in Distributed Systems, Mannheim Feb, 1991,

Informatik-Fachberichte 267, Springer-Verlag, Heildelberg 1991, pages 451-

463.

[15] M. G. Reed, P. F. Syverson, and D. M. Goldschlag.Privacy on the Internet,
INET '97, Kuala Lumpur, Malaysia, June, 1997.

[16] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Proxies for Anonymous
Routing, Proc. 12th Annual Computer Security Applications Conference,

San Diego, CA, IEEE CS Press, December, 1996, pp. 95{104.

[17] M. Reiter and A. Rubin. Crowds: Anonymity for Web Transactions (pre-
liminary announcement), DIMACS Technical Reports 97-15, April 1997.

[18] P. Syverson, D. Goldschlag, and M. Reed. Anonymous Connections and
Onion Routing, Proceedings of the Symposium on Security and Privacy,

Oakland, CA, May 1997.

[19] P. Syverson, S. Stubblebine, and D. Goldschlag. Unlinkable Serial Trans-
actions, Financial Cryptography '97, February 1997.

13


