
David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

Hiding Routing Information

David M. Goldschlag, Michael G. Reed, and Paul F. Syverson

Naval Research Laboratory, Center For High Assurance Computer Systems,

Washington, D.C. 20375-5337, USA, phone: +1 202.404.2389, fax: +1 202.404.7942,
e-mail: flast nameg@itd.nrl.navy.mil.

Abstract. This paper describes an architecture, Onion Routing, that
limits a network's vulnerability to tra�c analysis. The architecture pro-

vides anonymous socket connections by means of proxy servers. It pro-

vides real-time, bi-directional, anonymous communication for any proto-
col that can be adapted to use a proxy service. Speci�cally, the architec-

ture provides for bi-directional communication even though no-one but

the initiator's proxy server knows anything but previous and next hops
in the communication chain. This implies that neither the respondent

nor his proxy server nor any external observer need know the identity

of the initiator or his proxy server. A prototype of Onion Routing has
been implemented. This prototype works with HTTP (World Wide Web)

proxies. In addition, an analogous proxy for TELNET has been imple-

mented. Proxies for FTP and SMTP are under development.

1 Introduction

This paper presents an architecture that limits a network's vulnerability to traf-

�c analysis. We call this approach Onion Routing , because it relies upon a lay-

ered object to direct the construction of an anonymous, bi-directional, real-time

virtual circuit between two communicating parties, an initiator and responder .

Because individual routing nodes in each circuit only know the identities of adja-

cent nodes (as in [1]), and because the nodes further encrypt multiplexed virtual

circuits, studying tra�c patterns does not yield much information about the

paths of messages. This makes it di�cult to use tra�c analysis to determine

who is communicating with whom.

Onion Routing provides an anonymous socket connection through a proxy

server. Since proxies are a well de�ned interface at the application layer [12, 11],

and many protocols have been adapted to work with proxy servers in order to

accommodate �rewalls, Onion Routing can be easily used by many applications.

Our prototype works with HTTP (World Wide Web) proxies. In addition, a

proxy for TELNET has been implemented.

Tra�c analysis can be used to help deduce who is communicating with whom

by analyzing tra�c patterns instead of the data that is sent. For example, in

most networks, it is relatively easy to determine which pairs of machines are

communicating by watching the routing information that is part of each packet.

Even if data is encrypted, routing information is still sent in the clear because

routers need to know packets' destinations, in order to route them in the right

1



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

direction. Tra�c analysis can also be done by watching particular data move

through a network, by matching amounts of data, or by examining coincidences,

such as connections opening and closing at about the same time.

Onion Routing hides routing information by making a data stream follow a

path through several nodes en route to its destination. The path is de�ned by

the �rst node, which is also a proxy for the service being requested (e.g., HTTP

requests). Therefore, this Proxy/Routing Node is the most sensitive one, so sites

that are concerned about tra�c analysis should also manage a Proxy/Routing

Node. We will see later that it is important that this Proxy/Routing Node also

be used as an intermediate routing node in other virtual circuits. Although the

compromise of all routing nodes compromises the hiding, one uncompromised

routing node is su�cient to complicate tra�c analysis. Figure 1 illustrates the

topology of an Onion Routing network with �ve nodes, one of which (W ) is the

Proxy/Routing node for the initiator's site.

W is a Proxy/Routing Node
controlled by Secure Site

InternetSecure Site

Routing/Proxy Node

W X U

Y ZInitiator
Machine

Responder
Machine

Routing Node

Link Encrypted Connection Between Routing Nodes

Fig. 1. Routing Topology.

The goal of Onion Routing is not to provide anonymous communication.

Parties are free to (and usually should) identify themselves within a message. But

the use of a public network should not automatically give away the identities and

locations of the communicating parties. For example, imagine a researcher who

uses the WorldWide Web to collect data from a variety of sources. Although each

2



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

piece of information that he retrieves is publicly known, it may be possible for an

outside observer to determine his sensitive interests by studying the patterns in

his requests. Onion Routing makes it very di�cult to match his HTTP requests

to his site.

Anonymous re-mailers [5, 6] attempt to limit the feasibility of tra�c analysis

by providing an anonymous store and forward architecture. To prevent replay

attacks, re-mailers keep a log of sent messages. These two characteristics make

the anonymous re-mailer approach unsuitable for HTTP applications, as HTTP

requests would both generate an enormous log and require bi-directional commu-

nication. Anonymous ISDN [8] has even more severe real-time and bi-directional

requirements than HTTP, but, the architecture of an ISDN network is consider-

ably di�erent from the architecture of the Internet [4].

Onion Routing provides bi-directional communication,without requiring that

the responder know the initiator's identity or location. Individual messages are

not logged. In addition, Onion Routing is easily adapted to electronic mail.

Messages can include Reply Onions that permit a later reply to the sender

without knowing his address and without keeping the original virtual circuit

open.

The rest of the paper is organized in the following way: Section 2 presents

background information. Section 3 describes the Onion, the object that directs

the construction of the virtual circuit. Section 4 describes the construction and

use of these virtual circuits. Section 5 describes the vulnerabilities in the Onion

Routing architecture. Section 6 presents some concluding remarks.

2 Background

Chaum [1] de�nes a layered object that routes data through intermediate nodes,

called mixes. These intermediate nodes may reorder, delay, and pad tra�c to

complicate tra�c analysis. Some work has been done using mixes in ATM net-

works [3].

Anonymous Remailers like [5, 6] use mixes to provide anonymous e-mail

services and also to invent an address through which mail can be forwarded back

to the original sender. Remailers work in a store and forward manner at the mail

application layer, by stripping o� headers at each mix, and forwarding the mail

message to the next mix. These remailers provide con�rmation of delivery.

In [8], mixes are used to provide untraceable communication in an ISDN

network. In a phone system, each telephone line is assigned to a particular local

switch (i.e., local exchange), and switches are interconnected by a (long distance)

network. Anonymous calls in ISDN rely upon an anonymous connection within

each switch between the caller and the long distance network, which is obtained

by routing calls through a prede�ned series of mixes. The long distance endpoints

of the connection are then mated to complete the call. (Notice that observers can

tell which local switches are connected.) This approach relies upon two unique

features of ISDN switches. Since each phone line has a subset of the switch's

total capacity pre-allocated to it, there is no (real) cost associated with keeping

3



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

a phone line active all the time, either by making calls to itself, to other phone

lines on the same switch, or to the long distance network. Keeping phone lines

active complicates tra�c analysis because an observer cannot track coincidences.

Also, since each phone line has a control circuit connection to the switch,

the switch can broadcast messages to each line using these control circuits. So,

within a switch a truly anonymous connection can be established: A phone line

makes an anonymous connection to some mix. That mix broadcasts a token

identifying itself and the connection. A recipient of that token can make another

anonymous connection to the speci�ed mix, which mates the two connections to

complete the call.

Our goal of anonymous socket connections over the Internet di�ers from

anonymous remailers and anonymous ISDN. The data is di�erent, with real-time

constraints more severe than mail, but somewhat looser than voice. Both HTTP

and ISDN connections are bidirectional, but, unlike ISDN, HTTP connections

are likely to be small requests followed by short bursts of returned data. In a

local switch capacity is pre-allocated to each phone line, and broadcasting is

e�cient. But broadcasting over the Internet is not free, and de�ning broadcasts

domains is not trivial. Most importantly, the network topology of the Internet

is more akin to the network topology of the long distance network between

switches, where capacity is a shared resource. In anonymous ISDN, the mixes

hide communication within the local switch, but connections between switches

are not hidden. This implies that all calls between two businesses, each large

enough to use an entire switch, reveal which businesses are communicating. In

Onion Routing, mixing is dispersed throughout the Internet, which improves

hiding.

3 Onions

To begin a session between an initiator and a responder, the initiator's proxy

identi�es a series of routing nodes forming a route through the network and

constructs an onion which encapsulates that route. Figure 2 illustrates an onion

constructed by the initiator's Proxy/Routing Node W for an anonymous route

to the responder's Proxy/Routing Node Z through intermediate routing nodes

X and Y . The initiator's proxy then sends the onion along that route to establish

a virtual circuit between himself and the responder's proxy.

The onion data structure is composed of layer upon layer of encryption

wrapped around a payload. Leaving aside the shape of the payload at the very

center, the basic structure of the onion is based on the route to the responder

that is chosen by the initiator's proxy. Based on this route, the initiator's proxy

encrypts �rst for the responder's proxy, then for the preceding node on the route,

and so on back to the �rst routing node to whom he will send the onion. When

the onion is received, each node knows who sent him the onion and to whom he

should pass the onion. But, he knows nothing about the other nodes, nor about

how many there are in the chain or his place in it (unless he is last). What a

4



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

exp_timex,Y,Ffx,Kfx,Fbx,Kbx,

exp_timey,Z,Ffy,Kfy,Fby,Kby,

exp_timez,NULL,Ffz,Kfz,Fbz,Kbz,PADDING

X

Y

Z

Fig. 2. A Forward Onion.

node Px receives looks like this

fexp time; next hop; Ff ;Kf ; Fb;Kb; payloadgPKx

Here PKx is a public encryption key for routing node Px, who is assumed

to have the corresponding decryption key.1 The decrypted message contains an

expiration time for the onion, the next routing node to which the payload is to

be sent, the payload, and two function/key pairs specifying the cryptographic

operations and keys to be applied to data that will be sent along the virtual

circuit. The forward pair (Ff ;Kf ) is applied to data moving in the forward

direction (along the route that the onion is traveling) the backward pair (Fb;Kb)

is applied to data moving in the opposite direction (along the onion's reverse

route).2 (If the receiving node is the responder's proxy, then the next hop �eld

is null .) For any intermediate routing node the payload will be another onion.

The expiration time is used to detect replays, which pairs of compromised nodes

could use to try to correlate messages. Each node holds a copy of the onion

until exp time. If he receives another copy of the same onion within that time

he simply ignores it. And, if he receives an onion that has expired, he ignores

that as well.

Notice that at each hop the onion shrinks as a layer is peeled o�. To avoid

compromised nodes inferring route information from this monotonically dimin-

ishing size, a random bit string the size of the peeled o� layer is appended to the

end of the payload before forwarding. No proxy except the last will know how

much of the payload he receives is such padding because he won't know where

1 Depending on certain assumptions about the �elds in each onion layer, a naive RSA

implementation of the simple public key encryption implied by our notation could

be vulnerable to an attack as described in [7]. In our implementation, this potential

vulnerability is illusory since the public key is only used to encrypt a secret key, and

that secret key is used to encrypt the remainder of the message using an e�cient

symmetric algorithm. This also makes for a more e�cient implementation than the

simple, straightforward implementation using only public keys.
2 Specifying two pairs of functions uni�es the virtual circuits that are constructed by

forward and reply onions. See section 3.3.

5



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

he is in the chain. He simply `decrypts' the padding along with the rest of the

onion. Even a constant size onion might be traced unless all onions are the same

size, so we �x the size of the onion. To maintain this constant size to hide the

length of the chain from the responder's proxy, the initiator's proxy will pad the

central payload according to the size of the onion, i.e., the number of hops. So,

when any onion arrives at the responder's proxy it will always have the same

amount of padding, either added initially or en route.

3.1 Creating the circuit

The goal in sending the onion is to produce virtual circuits within link encrypted

connections already running between routing nodes.3 More details will be given

in section 4. An onion occurs as the data �eld in one of the presently described

`messages'. Such messages contain a circuit identi�er, a command (create, de-

stroy , and data), and data. Any other command is considered an error, and the

node who receives such a message ignores that message except to return a destroy

command back through that virtual circuit. The create command accompanies

an onion. When a node receives a create command along with an onion, he

chooses a virtual circuit identi�er and sends another create message containing

this identi�er to the next node and the onion (padded with his layer peeled

o�). He also stores the virtual circuit identi�er he received and virtual circuit

identi�er he sent as a pair. Until the circuit is destroyed, whenever he receives

data on the one connection he sends it o� on the other. He applies the forward

cryptographic function and key (obtained from the onion) to data moving in the

forward direction (along the route the onion traveled) and the backward cryp-

tographic function and key to data moving in the opposite direction (along the

onion's reverse route). The virtual circuit established by the onion in �gure 2 is

illustrated in �gure 3:

Data sent by the initiator over a virtual circuit is \pre-crypted"4 repeatedly

by his proxy by applying the inverse of all the forward cryptographic operations

speci�ed in the onion, innermost �rst. Therefore, these layers of cryptography

will be peeled o� as the data travels forward through the virtual circuit. Data

sent by the responder is \crypted" once by his proxy and again by each previous

node in the virtual circuit using the backward cryptographic operation speci�ed

at the corresponding layer of the onion. The initiator's proxy applies the inverse

of the backward cryptographic operations speci�ed in the onion, outermost �rst,

to this stream, to obtain the plaintext.

3.2 Loose Routing

It is not necessary that the entire route be prespeci�ed by the initiator's proxy.

He can instruct various nodes along the route to choose their own route to the

3 Onions could be used to carry data also, but since onions have to be tracked to
prevent replay, this would introduce a large cost.

4 We de�ne the verb crypt to mean the application of a cryptographic operation, be

it encryption or decryption, where the two are logically interchangeable.

6



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

Data Flow (with Function/Key Pairs if crypted)
Unsecured Socket Connection
Virtual Circuit through Link Encrypted Connection Between Routing Nodes
Link Encrypted Connection Between Routing Nodes

Fbx,Kbx

W X U

Y ZInitiator
Machine

Responder
Machine

Routing Node

Routing/Proxy Node

InternetSecure Site

Fb z,Kb z

Ffy,Kfy Ffz,Kfz

Fby,Kby
Ffx,Kfx

W is a Proxy/Routing Node
controlled by Secure Site

Fig. 3. A Virtual Circuit.

next prespeci�ed node. This can be useful for security, adding more hops to the

chain. It could also be used if the initiating proxy does not know a complete,

connected route to the responder but believes that the node where any break

occurs can construct a route to the next node. Or, loose routing can be used to

handle connection changes that occur of which the initiator was unaware. Also,

since onions are all of �xed size, there is a �xed maximum length to the route

from the initiator's proxy to the responder's proxy. Loose routing allows us to

increase the size of that maximum for the same �xed onion size. Why this is so

should become clear presently.

It is also possible to iterate the loose routing process, allowing nodes on the

added route to themselves add to the chain. Obviously, we need a mechanism to

prevent the chain from lengthening inde�nitely. This can be incorporated into

the onion structure. An onion for a system that allows for loose routing is as

follows:

fexp time; next hop;max loosecount; Ff ;Kf ; Fb;Kb; payloadgPKx

If the node receiving this onion decides to loose-route the onion, he prepares

a new onion with up to max loosecount layers. The payload of this onion is

7



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

simply the onion he received with PKx changed for the last (innermost) node

he added to the chain. In other words, he behaves as an initiator's proxy except

that his payload is itself already an onion. (This node behaves like an initiator's

proxy with respect to data also, since he must repeatedly pre- and post- crypt

data that moves along the diverted route.) To keep the onion a constant length

he must truncate the payload by an amount commensurate with the layers he

has added to the onion. The initiating proxy must anticipate the amount of

padding (both present initially and any added and/or truncated en route) that

will be on the central payload at the time loose routing occurs to allow for this

truncation. Failure to pre-pad correctly or ignoring an onion's �xed size will

result in a malformed onion later in the route. The total of the max loosecount

values occurring in the added layers plus the number of added layers must be

less than or equal to the max loosecount value that the adding node received.

3.3 Reply Onions

There are applications in which it would be useful for a responder to send back

a reply after the original circuit is broken. This would allow answers (like e-mail

replies) to be sent to queries that were not available at the time of the original

connection. As we shall see presently, this also allows the responder as well as

the initiator to remain hidden. The way we allow for these delayed replies is by

sending a reply onion to accompany the reply. Like the forward onion, it reveals

to each node en route only the next step to be taken. It has the same structure as

the forward onion and is treated the same way by nodes en route. Intermediate

nodes processing an onion cannot di�erentiate between forward and reply onions.

Furthermore, the behavior of the original initiator and responder proxies are the

same, once the circuit is formed.

The primary di�erence between a forward and a reply onion is the innermost

payload. The payload of the forward onion can be e�ectively empty (containing

only padding). The reply onion payload contains enough information to enable

the initiator's proxy to reach the initiator and all the cryptographic function and

key pairs that are to crypt data along the virtual circuit. The initiator's proxy

retrieves the keys from the onion. Figure 4 illustrates a reply onion constructed

by the initiator's Proxy/Routing Node W for an anonymous route back to him

starting at the responder's Proxy/Routing Node Z through intermediate routing

nodes Y and X:

There is no di�erence between virtual circuits established by reply onions

and forward onions, except that in circuits established by reply onions interme-

diate routing nodes appear to think that forward points toward the initiator's

proxy. But since the behavior of intermediate routing nodes is symmetric, this

di�erence is irrelevant. The terminal Proxy/Routing nodes, however, have the

same behavior in circuits established by forward and reply onions. Therefore, a

�gure of the virtual circuit formed by the reply onion illustrated in �gure 4 would

be identical to the virtual circuit illustrated in �gure 3 even though the circuit

was formed by the reply onion moving from the responder's proxy node to the

8



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

exp_timez,Y,Fbz,Kbz,Ffz,Kfz,

exp_timey,X,Fby,Kby,Ffy,Kfy,

exp_timex,W,Fbx,Kbx,Ffx,Kfx,

Z

Y

X

Wexp_timew,NULL,NULL,NULL,NULL,NULL,

{IDENTITY,Fbx,Kbx,Ffx,Kfx,Fby,Kby,Ffy,Kfy,

Fbz,Kbz,Ffz,Kfz,PADDING}

Fig. 4. A Reply Onion.

initiator's proxy node. Internally to the intermediate nodes, the forward crypto-

graphic functions are applied to data moving in the direction that the circuit was

established, and the backward cryptographic functions are applied to data mov-

ing in the opposite direction. The location of the terminal Proxy/Routing Nodes

are in this sense reversed, with the initiator's proxy at the end of the circuit and

the responder's proxy at the beginning of the circuit. However, the behavior of

the initiator and responder proxies is identical to their behavior in the virtual

circuit formed by a forward onion. This is the reason for having forward and

backward function/key pairs at each layer of the onion.

Like a forward onion, a reply onion can only be used once. When a node

receives an onion it is kept until it expires, and any onion received is compared

to detect replay. If a replay is detected, it is treated as an error and ignored.

Since reply onions can only be used once, if multiple replies are desired, multiple

reply onions must be sent. Of course, they need not all follow the same return

route; although they may. If replies are only likely to be forthcoming if they are

anonymous, one or more reply onions can be broadcast. Anyone can then reply

with an unused onion. If he can maintain anonymity from or in cooperation with

the responder's proxy for that reply onion, then he can do so anonymously.

4 Implementation

The easiest way to build our system without requiring the complete redesign and

deployment of new client and server software is to make use of existing proxy

technologies. Historically, proxy technologies have been used to create tunnels

through a �rewall. The use of proxy technologies requires that the client applica-

tions be `proxy aware'. The widespread deployment of �rewalls on the Internet

has created the demand for such proxy aware applications, which software man-

ufacturers are rushing to meet.

9



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

In the �rewall setting, a system administrator will set up a proxy server on

the �rewall machine which will be responsible for forwarding requests from the

protected domain out onto the open Internet, and maintain a return path for

the response to the request. A proxy server can be divided into two parts: the

front end that receives and parses the request, and the back end that processes

the request and returns the results back to the requester. Classically, the front

and back ends are the same process running on one machine.

Under our system we will use a traditional proxy front end and back end, but,

they will be separate processes on separate machines with a tunnel connecting

them. In this manner, our Proxy/Routing Nodes will look no di�erent to the

client and server software than any other proxy server. A couple of assumptions

will hold for the remainder of this paper: 1) Proxy/Routing Nodes and interme-

diate routing nodes know about each other in advance of their operation, and 2)

public key certi�cates for each node have been securely distributed to all others

prior to operation.

All nodes are connected by link encrypted connections which multiplex many

virtual circuits between initiator and responder proxy nodes. These connections

are link encrypted in an odd way (for e�ciency). All messages moving through

these connections are of �xed size and have two components, header and payload

�elds. Header �elds contain the virtual circuit identi�er and the command and

are link encrypted using a stream cipher [10]. Since all payload �elds will be

encrypted via other mechanisms (public keys or onion keys), they need not be

link encrypted.

There are three commands that nodes understand. The �rst is to create a

virtual circuit. At each node, a virtual circuit has two connections. Data arriv-

ing on one is passed along on the other. The circuit is de�ned by the labels

for these two connections. Creating a virtual circuit is the process of de�ning

these labels for each node along the route. For the �rst Proxy/Routing Node,

one connection is a link to the initiator, and the other is a link to the next

routing node. The Proxy/Routing Node creates an onion de�ning the sequence

of intermediate routing nodes to the responder's Proxy/Routing Node. It breaks

the onion up into payload sized chunks and transmits these chunks in order to

the next node with a control �eld containing both the label of the connection

and a create command. Each subsequent node reassembles the onion and peels

o� a layer from the onion which reveals the next node in the route and two cryp-

tographic function/key pairs. Before acting on the create command, the node

checks whether the onion has expired or is a replay. To check for replay, the node

consults a table of unexpired onions. If the onion is valid, it is inserted into the

table, and the node then labels a new connection to the next node and passes the

peeled and padded onion in a similar sequence of messages to the next node. It

also updates a table containing the labels and cryptographic function/key pairs

associated with the new virtual circuit. The appropriate (forward or backward)

function/key pair should be used to crypt data moving along that circuit. The

responder's Proxy/Routing Node, recognizing that the onion is empty, will par-

tially update its tables. As with standard proxies the next data message along

10



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

this circuit will identify the responder.

The second command is data. The second role of the initiator's Proxy/Rout-

ing Node is to pass a stream of data from the initiator along the virtual circuit

together with other control information for the responder's Proxy/Routing Node.

To do this, he breaks the incoming stream into (at most) payload sized chunks,

and repeatedly pre-crypts each chunk using the inverse of the cryptographic

operations speci�ed in the onion, innermost �rst. The function/key pairs that

are applied, and the virtual circuit identi�er of the connection to the next node

are obtained from a table. The header �eld for each payload is the label of

the connection and a data command. Each subsequent node looks at its table,

obtaining the cryptographic function/key pair associated with the circuit (for

the appropriate direction) and the virtual circuit identi�er of the connection to

the next node. It then peels o� a layer of cryptography and forwards the peeled

payload to the next node. Once the data reaches the responder's proxy, its �nal

cryption will produce the plaintext that is to be processed or forwarded to the

responder.

The data command can also be used to move data from the responder's

Proxy/Routing Node to the initiator's Proxy/Routing Node. The responder's

Proxy/Routing Node obtains the cryptographic function/key pair and the vir-

tual circuit identi�er for the next node from its tables, and crypts the stream.

It breaks the crypted stream into payload sized chunks and forwards them to

the next node with the appropriate control �eld. Each subsequent node further

stream crypts each payload using the appropriate function/key associated with

that virtual circuit. Once a messages arrives at the initiator's Proxy/Routing

Node he looks at his table and applies the inverse of the backward cryptographic

operations speci�ed in the onion, outermost �rst, to this stream to obtain the

plaintext. The plaintext is forwarded to the initiator.

The third command is destroy which is used to tear down a virtual circuit

when it is no longer needed or in response to certain error conditions. Notice

that destroy messages can be initiated by any node along a virtual circuit, and it

is a node's obligation to forward the destroy messages in the appropriate direc-

tions. (A node initiating a destroy message in an active virtual circuit forwards

it in both directions. A node that receives a destroy message passes it along

in the same direction.) The payload of a destroy command is empty padding.

Nonetheless, this payload is still crypted with the appropriate function/key pair.

In addition to the destroy command, the control �eld contains the virtual cir-

cuit identi�er of the recipient of the destroy command. Upon receipt of a destroy

command a node deletes the table entries associated with that virtual circuit.

5 Vulnerabilities

Onion Routing is not invulnerable to tra�c analysis attacks. With enough data,

it is still possible to analyze usage patterns and make educated guesses about

the routing of messages. Also, since our application requires real time commu-

nication, it may be possible to detect the near simultaneous opening of socket

11



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

connections on the �rst and last proxy servers revealing who is requesting what

information. However, these sorts of attacks require the collection and analysis

of huge amounts of data by external observers.

Other attacks depend upon compromised Proxy Servers and Routing Nodes.

If the initiator's proxy is compromised then all information is revealed. In general

it is su�cient for a single routing node to be uncompromised to complicate tra�c

analysis. However, a single compromised routing node can destroy connections

or stop forwarding messages, resulting in denial of service attacks.

Onion Routing uses expiration times to prevent replay attacks. It is curious

that, unlike timestamps, the vulnerability due to poorly synchronized clocks here

is a denial of service attack, instead of a replay attack. If a node's clock is too

fast, otherwise timely onions will appear to have already expired. Also, since

expiration times de�ne the window during which nodes must store used onions,

a node with a slow clock will end up storing more information.

If the responder's proxy is compromised, and can determine when the unen-

crypted data stream has been corrupted, it is possible for compromised nodes

earlier in the virtual circuit to corrupt the stream and ask which responder's

proxy received uncorrupted data. By working with compromised nodes around a

suspected initiator's proxy, one can identify the beginning of the virtual circuit.

The di�culty with this attack is that once the data stream has been corrupted, it

will remain corrupted (because we use a stream cipher), limiting further analysis.

In order for Onion Routing to be e�ective, there must be signi�cant use of all

the nodes, and Proxy Nodes must also be intermediate routing nodes. Choosing

the appropriate balance between e�cient use of network capacity and security is

a hard problem both from a theoretical and practical standpoint. Theoretically,

it is di�cult to calculate the value of the tradeo�. For more security, network

tra�c must be relatively constant. This requires sending dummy tra�c over a

connection when tra�c is light and bu�ering data when tra�c is heavy. If tra�c

is very bursty and response time is important, smoothing out network tra�c

requires wasting capacity. If however, tra�c is relatively constant, additional

smoothing may not be necessary. From a practical point of view, the Internet

may not provide the control necessary to smooth out tra�c: unlike ATM, users

do not own capacity on shared connections. The important observation, however,

is that Onion Routing forms an architecture within which these tradeo�s can be

made and explored.

6 Conclusion

Onion Routing is an architecture that hides routing information while providing

real-time, bi-directional communication. Since it provides a virtual circuit that

can replace a socket connection, Onion Routing can be used in any protocol that

can be adapted to use a proxy service. Although our �rst use is in HTTP and

TELNET, it is easy to imagine other applications. In e-mail, for example, Onion

Routing would create an anonymous socket connection between two sendmail

daemons. This contrasts with Anonymous Remailers, where each remailer pro-

12



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

vides a single hop in a chain of mail forwarding. In this sense, in Onion Routing,

the rerouting of messages is independent of the type of message.

Other extensions are also possible and integrate nicely with the proxy ap-

proach to anonymity. For example, to create a completely anonymous conver-

sation between two parties, each party would make an anonymous connection

to some anonymity server, which mates connections sharing some token. This

approach, similar to IRC servers, can also be used if the responder does not trust

the initiator, especially with (broadcast) reply onions. The responder builds his

own (trusted) connection to some anonymity server, and asks that anonymity

server to build another connection to the initiator using a reply onion and to

mate the two connections. Each party is therefore protected by a route that he

determined.

In Onion Routing the encryption burden on connected intermediate nodes is

less than the burden of link encryption on routers. In link encryption, each packet

is encrypted by the sender and decrypted by the recipient. In Onion Routing

the header and payload of each message are crypted separately: the header is

encrypted and decrypted using the connection's key, and the payload is crypted

(only by the recipient) using the appropriate function/key pair associated with

the virtual circuit.

Our goal here is not to provide anonymous communication, but, to place iden-

ti�cation where it belongs. The use of a public network should not automatically

reveal the identities of communicating parties. If anonymous communication is

undesirable, it is easy to imagine �lters on the endpoint machines that restrict

communication to signed messages.

Onion Routing will only be e�ective in complicating tra�c analysis if its

Proxy and Routing Nodes become widespread and widely used. There is an ob-

vious tension between anonymity and law enforcement. If this tension is resolved

in favor of law enforcement, it would be straightforward to integrate a key escrow

system within the onion, which would make routing information available to the

lawful authorities.

7 Acknowledgements

Discussions with many people helped develop the ideas in this paper. We would

like to thank Ran Atkinson, Markus Jakobbsen, John McLean, Cathy Meadows,

Andy Moore, Moni Naor, Holger Peterson, Birgit P�tzmann, Michael Steiner,

and the anonymous referees for their helpful suggestions.

References

1. D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms, Communications of the ACM, v. 24, n. 2, Feb. 1981, pages 84-88.

2. D. Chaum, The Dining Cryptographers Problem: Unconditional Sender and Recip-

ient Untraceability, Journal of Cryptology, 1/1, 1988, pages 65-75.

13



David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. \Hiding Routing Information,"

Workshop on Information Hiding, Cambridge, UK, May, 1996.

3. S. Chuang. Security Management of ATM Networks, Ph.D. thesis, in progress,
Cambridge University.

4. D. E. Comer. Internetworking with TCP/IP, Volume 1: Principles, Protocols, and

Architecture, Prentice{Hall, Engelwood Cli�s, New Jersey, 1995.

5. L. Cottrell. Mixmaster and Remailer Attacks,

http://obscura.obscura.com/e loki/remailer/remailer-essay.html
6. C. Gulcu and G. Tsudik. Mixing Email with Babel, 1996 Symposium on Network

and Distributed System Security, San Diego, February 1996.

7. A. P�tzmann and B. P�tzmann. How to Break the Direct RSA-implementation of

MIXes, Advances in Cryptology{EUROCRYPT '89 Proceedings, Springer-Verlag,

Berlin, 1990, pages 373-381.

8. A. P�tzmann, B. P�tzmann, and M. Waidner. ISDN-Mixes: Untraceable Commu-

nication with Very Small Bandwidth Overhead, GI/ITG Conference: Communica-

tion in Distributed Systems, Mannheim Feb, 1991, Informatik-Fachberichte 267,

Springer-Verlag, Heildelberg 1991, pages 451-463.
9. A. P�tzmann and M. Waidner. Networks Without User Observability, Computers

& Security, 6/2 1987, pages 158-166.

10. B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in C,

John Wiley and Sons, 1994.

11. W. R. Stevens. TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP,

NNTP, and the UNIX Domain Protocols, Addison{Wesley, Reading, Mass., 1996.
12. L. D. Stein. How to Set up and Maintain a World Wide Web Site: The Guide for

Information Providers, Addison{Wesley, Reading, Mass., 1995.

This article was processed using the LATEX macro package with LLNCS style

14


